
MISCELMN'E'OUS PAPER ITL-W7

CADD SURFACE MODELING FOR INPUT TO WAVE
RESPONSE NUMERICAL INVESTIGATIONS

by

Steven D. Hatton

Information Technology Laboratory

DEPARTMENT OF THE ARMY
waterways Experiment Station, Corps of Engineers

3909 Halls Ferry Road, Vicksburg, Mississippi 39180-6199

TEM LA I

EMPLATE 2

TIC

F F
OCT 17 1990

September 1990 D i
Final Report E

Approved For Pubk PAlesse; DistnW*m UnilmMd

1200

Pr"ted for DEPARTMENT OF THE ARMY
US Army Corps of Engineers

Washington, DC 20314-1000

Destroy this report when no longer needed. Do not return
it to the originator.

The findings in this report are not to be construed as an official
Department of the Army position unless so designated

by other authorized documents.

The contents of this report are not to be used for
advertising, publication, or promotional purposes.
Citation of trade names does not constitute an
official endorsement or approval of the use of

such commercial producta.

Unclassified
SECURITY CLASSIFICATION OF 7-'S PACE

Form ApprovedREPORT DOCUMENTATION PAGE OMBNo. 7Orove

la REPORT SECURITY CLASSFiCATION lb RESTRIC7IVE MARKINGS

Unclassified

2a. SECURITY CLASSIFICATION AUTHORIT, 3 DISTRIBUTION AVAILABILITY OF REPORT

Approved for puhlic release; distribution

2b. DECLASSIFICATION / DOWNGRADING SCHEDU E unl imi ted.

4 PERFORMING ORGANIZATION REPORT NuMBER(S) S MONITORING ORGANIZATION REPORT NUMBER(S)

Miscellaneous Paper ITL-90-7

6a. NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a NAME OF MONITORING ORGANIZATION
USAEWES, Information (If applicable)

Technology Laboratory CEWES-IM

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

3909 Halls Ferry Road

Vicksburg, MS 39180-6199

Ba. NAME OF FUNDING/SPONSORING 8b OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

8c. ADDRESS (City, Stare, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT

ELEMENT NO. NO. NO. IACCESSION NO

11 TITLE (Include Security Classification)

CADD Surface Modeling for Input to Wave Response Numerical Investigations

12. PERSONAL AUTHOR(S)

13a. TYPE OF REPORT 13b. TIME COVERED 14 DATE OF REPORT (Year, Month, Day) 15 PAGE COUNT

Final report FROM TO September 1990 70

16. SUPPLEMENTARY NOTATION

Available from National Technical Information Service, 5285 Port Royal Road, Springfield.

VA 22161.

17 COSAT CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP Harbors--Hydrodynamics--Computer simulation

Harbors--Hawaii--Hawaii IslandI (Continued on reverse)

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

This report documents and describes the procedure to utilize computer-aided design

and drafting surface modeling to provide input data to a wave response program.

Specifically, a surface model created using Intergraph Corporation's Engineering Site

Package (ESP) was used to feed data into HARBD, a wave response program. .

20 DISTRIBUTION/AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION

W UNCLASSIFIEDUNLIMITED 0 SAME AS RPT C DTIC USERS Unclassified

22a. NAME OF RESPONSIBLE INDIVIDUAL I2b TFI FPHONE (Include Area Code) 22c OFFICE SYMBOL

DD Form 1473, JUN 86 Previous editions are obsolete SECURITY CLASSIFICATION OF THIS PAGE

Unclassified

Unclassifiled

:-;SS,;1CAT1ON OF THiIS PAGE

1S. SUBJECT TERMS (Contintied)

Ocean waves--hawaii-Kawaihae Harbor
fiv-drodynamics--Hawaii--Kawaihae Harbor-Mathematical models

LI

Unclassified

SECUR~ITY CLASSIFICATION OF THIS PAGE

Preface

This report documents and describes the procedure to utilize computer-aided design
and drafting surface modeling to provide input data to a wave response program.
Specifically, a surface model created using Intergraph Corporation's Engineering Site
Package (ESP) was used to feed data into HARBD, a wave response program.

This report was written at the US Army Engineer Waterways Experiment Station
(WES) by Mr. Steven D. Hatton, Computer-Aided Design and Drafting Center (CADD-

C), Information Technology Laboratory, with assistance from Ms. Linda Lillycrop, Coas-
tal Engineer:ng Research Center. The program used to extract data from ESP was
written by Mr. Michael Roney, US Army Engineer District, Sacramento. Mr. Roney and
Ms. Lori Copeland, US Army Engineer District, Sacramento, provided technical advice
and review of this report.

The following reference material was used during the conduct of this project and the

creation of this report:

Engineering Site Package User's Guide
Software Release 8.8, rev. 2
May 1, 1988
Intergraph Corporation

Calculation of Water Oscillation in Coastal Harbors
HARBS and HARBD Users Manual
Written by: H. S. Chen and J. R. Houston
Instruction Report CERC-87-2, WES, April 1987

Permission to use copyrighted material was received from Intergraph in conjunction
with purchase of the ESP software.

Work on this project was performed under the direction of Dr. N. Radhakr'shnan,
Chief, Information Technology Laboratory, Dr. Edward Middleton, Chief, Computer-
Aided Engineering Division, and Mr. Carl Stephens, Chief, CADD-C.

COL Larry B. Fulton, EN, was the Commander and Director of WES during this
project. Dr. Robert W. Whalin was Technical Director.

I I I I1

Contents

Page

Preface . .. 1

Conversion Factors, Non-SI to Si (Metric) Units
of Measurement. 3

Introduction 4

Kawaihae Harbor Project. 4

Background. 4
Proposed Solution. 7
Solution Procedure 7
Modification of ESP/TABTRX Output. 9

Project Discussion. 12

Summary 12
Other Considerations 13

Appendix A: Sample Output from ESP\TABTRX Extraction 17

Appendix B: Sample Input for HARBD 21

Appendix C: Source Code for TABTRX. 25

List of Figures

Figure 1. Plan view of Kawaihae Harbor. 5
Figure 2. Typical HARBD model 6
Figure 3. Surface model design templates 8
Figure 4. ESP-generated surface grid 10
Figure 5. HARBD-modlfied surface grid. 11
Figure 6. Isometric view of topographical model. 14
Figure 7. Sample ESP cross sections 15
Figure 8. Sample report output of ESP. 16

2

Conversion Factors, Non-SI To SI (Metric)
Units Of Measurement

Non-SI units of measurement used in this report can be converted to SI (metric)
units as follows:

Multiply By To Obtain

feet 0.3048 metres

inches 2.54 centimetres

miles (US statute) 1.609347 kilometres

yards 0.9144 metres

3

CADD SURFACE MODELING FOR INPUT TO WAVE

RESPONSE NUMERICAL INVESTIGATIONS

Introduction

This document describes the procedure used to interface Intergraph's Engineering
Site Package (ESP) with a wave prediction program from the US Army Engineer Water-
ways Experiment Station (WES) Engineering Computer Programs Library (ECPL),
HARBD. TABTRX, a program written at the Sacramento District to extract coordinate
data from ESP surface models, was used to link ESP and HARBD. This document
provides an example of ESP used in a nontraditional way, and it is hoped that it will
stimulate thought as to other areas in which ESP might be used. Appendices A-C give
sample input, output, and source codes for the programs.

Kawalhae Harbor Project

Background

- The WES Coastal Engineering Reserch Center (CERC) was asked to numerically
model the effects of proposed, site p!an and breakwater modifications at Kawaihae Har-

bor on the island of Hawaii,,(Figure i) CERC uses HARBD, a program from the ECPL
that predicts harbor wave response. The program requires that the harbor surface be
described by triangular elements with xy coordinate data at the vertices and a cor-
responding water depth at the element centroid. The size of the triangles is dependent

upon wavelength and was limited to 20 ft* for this case. An example of a HARBD
model is shown in Figure 2.

In the past, to use HARBD, CERC had to draft a grid, digitize triangle vertices, num-
ber nodes, create and number elements, digitize depths, and load the data into the pro-
gram. This was a very labor-intensive and time-consuming procedure. In addition,
digitizing had to be performed nongraphically which, without visual feedback as to the
accuracy of the model, greatly complicated model generation. For this particular
project, topography was limited to maps of 1 in. = 100 ft. With the given topography

A table of factors for converting non-SI units of measurement to SI (metric) units Is provided
on page 3.

4

0
z.
0.- V X c

w ctw

cis

'0'

i.OUfl IYOd, ~OflO3~ML0O
U21VM~~Y2UU wW±~3i C

5 A

0-

b a 23U IN. *6.04 CM

Figure 2. Typical HARBD model

6

and triangle leg length limitations, points had to be digitized 1/5 in. on center for an

area roughly 1/4-mile square. This translates into nearly 5,000 points.

Proposed solution

It was known that ESP could be used to easily generate the harbor topography and,

using ESP's gridding function, obtain points at regular intervals. ESP could also be

used to create templates and alignments describing the various revetments, break-

waters, and wave absorbers. A program called TABTRX was available that extracts

ESP surface data in a format readable by another hydraulic design program, TABS-2.

TABTRX was used to extract triangulated data from ESP and CERC modified the out-

put into a format usable by HARBD.

Solution procedure

The procedure for modeling the harbor consists of four steps: (1) digitizing contours,

(2) creating the surface model, (3) merging the breakwaters onto the base surface, and

(4) extracting the data. To simplify the work, the outline of the harbor with all pertinent

features was digitized and attached as a reference file to the working design file.

To begin the model, a reasonable amount of topological information was loaded

into the design file to enab!e the software to accurately describe the surface. Ap-

proximately 1,500 active points were digitized along the 2-ft contours. This procedure

can be completed very quickly by setting an elevation and placing points along the cor-

responding contour lines in sufficient number to describe the line's irregular shape.

["gitizing required less than 2 hr.

Once active points were placed, the ESP command "LOAD IGDS 3D" was used to

load the active points into the design surface. Prior to triangulating the surface, points

located outside the harbor boundary were deleted. The boundary of the project was

defined as mean sea level with a semicircular arc at the entrance to the harbor (Figure

2). The semicircle is a requirement of the wave modeling equation. The "CONVERT

TO GRID" command was used to interpolate between the digitized points to complete

the surface model with regularly spaced points 20 ft on center. Creating, loading, trian-

gulating, and gridding requires less than 1 hr.

With the base topography loaded, surface irregularities, revetments, and the wave

absorber were added. Five different templates were created to describe the various

levees (Figure 3). Using the reference file to define the necessary alignments, the

7

01=
LJ z

LLU

co<

LLU LLU

< L/)

LLJ <
LUA

LUL

00
z to

LU c
E

z 0
LU 4a

CO

V)V

L n

LULA.
00

LCU zi

software was used to push the template down the alignment and merge the resulting

surface with the base topography. Due to irregularities in the harbor geometries, some

extraneous triangles were formed which had to be deleted. Some triangles were

moved or modified because their vertices were not located on the project boundary.

Clean up of the grid required approximately 2 hr.

The complete triangulated model was written to the design file as graphic elements

(Figure 4). The displayed grid is actual triangular graphic elements in the design file

which are linked as a graphic group. Using ESP to display the triangles with the "DGN

LOCK ON" will write the triangles to the .DGN file. It is important to TABTRX that no

other information be located on the level where the triangles reside. In addition, there

must be enough free blocks in the design file for TABTRX to add the entire set of labels

for nodes and elements. The grid for this project required over 4,500 blocks, which re-

quired the design file to be larger than 9,000 blocks. TABTRX is executed interactively

from the DCL prompt and took approximately 6 hr to complete this model. Prior runs of

TABTRX on somewhat less complicated models required only 15 to 30 min. It appears

that the time required to extract surface data increases exponentially with the size of the

model. See Appendix C for more information on TABTRX.

Modification of ESP/TABTRX output

Because of special requirements of HARBD, the default format of TABTRX output,

and the general differences between ESP and HARBD models, some modifications to

the output had to be made. The procedure used to modify the ASCII data produced by

TABTRX consisted of seven steps: (1) removing elements/nodes located on harbor

structures, (2) removing duplicate elements/nodes, (3) assigning values to nonnum-

bered elements, (4) renumbering incorrectly ordered nodes on elements, (5) averaging

depths of nodes creating each element, (6) renumbering the nodes to reduce the grid

bandwidth, and (7) locating boundary elements. The completed modified grid is shown

in Figure 5. The seven steps were performed as follows:

a. The grid generated by ESP and TABTRX was plotted using DISSPLA software on a
VAX system. Plots of the mesh showing node and element numbering were required to
determine necessary modifications. The elements and nodes located on the harbor struc-
tures (i.e. tops of wave absorbers, levees, and breakwaters) were noted and removed
from the grid file using various grid manipulation codes (GMC) written specifically for
this project.

b. Plotting the modified grid revealed duplicate element and nodal numberings. All dupli-

cate numbers were found and removed since the numerical scheme in the HARBD

9

F\

[IF, I' F, r\

T
N r, p r i jj

1\1\ T, F,
F\ r\ F, F\ I\

F, F, F\ T\ 1 \ N F J' F\ 11 F Ill 11 F I
F, FIN

F r r, P'J' r, r, r.
F F

I T r7l
I I

I T11

L'L4"pT-rw.&j F, p p p r ir
rr F-rwF-cu ,pnr r, F, F\ F, r, r\T F,

rIrF\rrIPIIKr\r\rprrr, F7, N

F r

r,
I f r r r r,

F1 F, P,
r, r,
r,

F, N F\rI r,
r, I

Rr\r r'T
BILIT, r, r

I r

Figure 4. ESP-generated surface grid

10

Figure 5. HARBO-modifled surface grid

11

model will not allow this. GMC were written to search for duplicate nodes and ele-
ments, remove them, and renumber the grid.

C. Plotting during the modificatioi process revealed some unnumbered elements. The
nodes creating these elements were noted and the elements added to the grid file.

d. HARBD requires that all element nodes be numbered in counter-clockwise order. A
code which checks the order of the nodal numbering of each element was run and those
elements with clockwise numbering were corrected.

e. ESP assigns an elevation to each node in the surface model while HARBD corresponds
depths with each element. The elevations of each node were averaged and a depth, rela-
tive to an elevation of zero, was computed and assigned to the respective element.

f. A minimized bandwidth, defined as the maximum difference of values assigned to ad-
jacent nodes, is necessary to minimize computation time. A GMC was developed to
renumber the nodes as consecutively as possible which minimizes the difference be-
tween adjacent nodes.

g. Boundary elements of the harbor configuration must be specified in HARBD. In addi-
tion to the counter-clockwise numbering requirement, boundary elements must have the
first two nodes located on the boundary. Required modifications were found by plotting
boundary elements and their corresponding nodes.

Project Discussion

Summary

The generation of the ESP model for an experienced user should take less than 2
days. Although the procedure to modify the grid was time-consuming, the grid
generated by ESP was still a great improvement over previous generation methods.
The lessons learned from this initial application of ESP and TABTRX to HARBD will be
extremely beneficial in subsequent uses. With further experience, coordination, and
fine tuning, most of the grid modification procedure could be eliminated with HARBD
input almost completely performed using ESP and TABTRX.

As stated earlier, TABTRX was developed to provide an interface between ESP and
the hydraulic design program TABS-2. It follows that a modified form of TABTRX could
be used to more closely fit the form required by HARBD or other applications that re-
quire xyz surface data. Great potential exists for utilizing the surface modeling
capability of ESP to more clearly visualize a project and to reduce time-consuming and

repetitive tasks associated with the types of analysis packages discussed in this report.

12

Other considerations

An added advantage of using ESP to originate surface models for processing by

other design packages is that all features inherent to ESP are still available to the user.

For example, CERC's participation in the Kawaihae Harbor project was limited to predic-

tion of wave response with extensions of the offshore breakwater. However, an ancil-

lary benefit of using ESP is that volumetric data for this extension could have been

easily obtained from the same surface model. Also, additional dredging quantities and

alignments could be produced using the same model. Other features of ESP include

single and multiple cross-section extraction, either along an alignment or at random

positions, generation of contours and other slope definition graphics such as shading

and slope vectors, and plots of alignment profiles and mass-haul diagrams. Sample

results of these features are shown in Figures 6-8. Of course, once the model is

generated it becomes available to all disciplines within the system which allows inter-

faces with architects and site planners. This clearly demonstrates the cumulative ad-

vantages of beginning a project, such as the Kawaihae Harbor project, with a complete

ESP surface model.

13

74-

0
E

0

LL

14

CUMULATIVE fDS[0

LJee LUJ

+ 00e8eo 6

.0

LJs 0 m 0a 0 m

(f)U0

/LL E

L.L.

v CD1 n 2

6l -. 0000,0

om~ z

eee~e~ ---- N- IVA313

ESP EndJ Area Volume Report Date: 2/14/30

--
Station Area Area Ear-l-worK Ear-thwork. Mass

Fill Cut Fill Cut Volume
----------------------- --------------

580.00 433. 75 0 0 0 0
600. 00 q28. 7q 0. 00 504. 65 0. 00 504. 65
620. 00 884.68 0.00 671. 65 0.00 11 76. 0
640. 00 q7q. 39 0. 00 690. 40 0. 00 1866. 70
660.00 1178. 19 0.00 7qq 10 0. 00 2665. 80
680. 00 1 357. 1 7 0. 00 q3q. 02 0. 00 2604. 82
700. 00 1805. q1 0.00 1171.51 0. 00 4776.33
720.00 21 q7. 75 0 1482. 83 0. 00 625q. 16
740. 00 2060. 25 0 1577. 03 0 7836. 20
-60. 00 1979. 93 0.00 1496. 36 0. 00 ;332. 56
780. 00 2293. 67 0. 00 1582. 82 0. 00 1 q 5. 28
e00.00 2273. 41 3.00 16q1. 51 0. 00 12606. S
320.00 2182. 16 0.00 1650.21 0. 00 . 4257. 10
3 40. 00 2095.24 0.00 1584. 22 0.00 15841. 32
860.00 1878. 35 0.00 1471. 70 0. 00 1 721 3.02
380. 00 1 71 3. 5 0. 00 1 330. 35 0. 00 1 8643. 37
900.00 1632.06 0 1239. 13 0.00 1q882. 50
920.00 1 702.27 0.00 1234. q4 0. 00 21117. 44
q40. 00 L 782. 66 0 1290. 71 0. 00 22408. 15
?60.00 1644. 16 0.00 126q. 1q 0. 00 23677. 34
q80, 00 1540. 98 0. 00 11 79. 68 0. 00 24857. 03

1000. 00 151 4. 41 0.00 1 1 3. 63 0.00 25P88. 65
1020. 00 1 364. 88 0 1066. 41 0. 00 27055. 06
1 040.00 1 248. 70 0. 00 967. 9q 0. 00 28023. 05
i060. 00 18. 60 0.00 876. 78 0.00 28899. 83

Figure 8. Sample report output of ESP

16

Appendix A
Sample Output from ESP/TABTRX Extraction

The following output is ASCII data produced by TABTRX. TABTRX reads the char-
acteristics of the triangles produced by ESP, element number, node numbers, and coor-
dinate values, and writes the data in the format indicated. The first portion is element
data. The "Reserved for Four Sided Elements" field is a product of TABTRX and is not
output inherent to ESP. The same is true of the "Element Type Field". This field is only
appropriate for TABS-2 and other similar codes which require four-sided elements.
Numbers are broken down as:

Element 1st Four Characters

Number are Vertices Nodes I End of Record-i

Element Type Field----

1 353719002 365418419 72323287 0 0 X

The Five remaining L__Z erved for Four
characters are midside nodes - sided elements

The second portion of the printout contains the node numbers with their correspond-
ing x-, y-, and z-coordinates.
Node X-Coord. Y-Coord.

Number I
1-382078.12-432214.79 -2.08

Z-Coord

17

ELE. NO. NODE NUMBERS QUAD. NODES ELE. TYPE

1 353719002 365418419 72323287 0 0 x /
2 13623286 487023285 129 5232 0 0 x /
3 78 5159 7523284 486923283 0 0 x /
4 484923155 195 5342 19623282 0 0 x /
5 484923282 19621394 19823281 0 0 x /
6 486823280 198 5348 19923204 0 0 x /
7 458023060 19823280 486823279 0 0 x /
8 478323129 481923278 486023276 0 0 x /
9 478323276 486023277 486723274 0 0 x /
10 478323274 486723273 478223275 0 0 x /
11 478223273 486723272 486623270 0 0 x /
12 459023268 486623270 478223271 0 0 x /
13 459023268 486623269 484423266 0 0 x /
14 459023266 484423264 458923267 0 0 x /
15 458923264 484423265 486523262 0 0 x /
16 458923262 486523260 481823263 0 0 x /
17 481823260 486523261 481323258 0 0 x /
18 481823258 481323257 485923259 0 0 x /
19 485923257 481323256 481423255 0 0 x /
20 485923255 481423253 485823254 0 0 x /
21 485823253 481423252 486423250 0 0 x /
22 448323249 486423250 485823251 0 0 x /
23 448323249 486423248 484023246 0 0 x /
24 448223245 484023246 448323247 0 0 x /
25 448223245 484023244 451823242 0 0 X /

6913 194010017 194210016 194110015 0 0 x /
6914 150310009 170410014 1505 8188 0 0 x /
6915 1756 9420 1794 9422 175710013 0 0 x /
6916 179310012 1914 9891 179410011 0 0 x /
6917 150310009 1704 9418 175610010 0 0 x /
6918 1794 9889 1913 9886 170410008 0 0 x /
6919 1791 9409 179210007 1909 9994 0 0 x /
6920 170510006 193910005 193610004 0 0 X /
6921 190610003 193810002 193710001 0 0 x /
6922 1896 9989 190810000 1897 9983 0 0 x /
6923 1505 9999 1936 9998 1792 9997 0 0 x /
6924 1895 9982 1897 9996 1898 9977 0 0 x /
6925 1901 9874 1909 9994 1791 9995 0 0 X /
6926 1909 9993 1904 9992 1908 9991 0 0 X /
6927 1857 9973 1900 9990 1934 9967 0 0 X /
6928 1901 9872 1908 9989 1896 9988 0 0 x /
6929 1725 9969 1934 9987 1856 9834 0 0 X /
6930 1856 9986 1698 9985 1699 9840 0 0 X /
6931 1895 9982 1897 9983 1896 9984 0 0 X /
6932 1935 9981 1906 9980 1698 9979 0 0 X /
6933 1893 9860 1898 9977 1895 9978 0 0 X /

18

ELE. NO. NODE NUMBERS QUAD. NODES ETE. TYPE

6940 1892 9960 1855 9963 1933 9962 0 0 x /
6941 1889 9830 1892 9962 1933 9961 0 0 x /
6942 1130 9958 1855 9960 1892 9959 0 0 x /

9486 34 5105 33 5107 35 5106 0 0 x /
9487 30 5104 32 5103 31 5102 0 0 x /
9488 27 5101 29 5100 28 5099 0 0 x /
9489 26 5096 25 5098 13 5097 0 0 x /
9490 23 5093 22 5095 24 5094 0 0 x /
9491 19 5092 21 5091 20 5090 0 0 x /
9492 16 5089 18 5088 17 5087 0 0 x /
9493 14 5084 13 5086 15 5085 0 0 x /
9494 10 5083 12 5082 11 5081 0 0 x /
9495 7 5080 9 5079 8 5078 0 0 x
9496 4 5077 6 5076 5 5075 0 0 x
9497 1 5072 2 5073 3 5074 0 0 x
9999 /

NODE NO. X-COORD Y-COORD Z-COORD

1-382078.12-432214.79 -2.08
2-382098.12-432214.79 -2.77
3-382078.12-432194.79 -1.66
4-382758.12-431894.79 -8.23
5-382758.12-431914.79 -9.20
6-382778.12-431914.79 -9.45
7-383458.12-432414.79 -7.94
8-383478.12-432434.79 -7.92
9-383478.12-432414.79 -5.93
10-383118.12-432214.79 -16.10
11-383138.12-432234.79 -15.54
12-383138.12-432214.79 -16.07
13-383330.41-432510.34 0.00
14-383309.30-432472.30 0.00
15-383312.92-432520.04 0.00
16-382838.12-432094.79 -10.55
17-382838.12-432114.79 -10.35
18-382858.12-432114.79 -10.45
19-383478.12-432474.79 -9.42
20-383509.20-432474.24 -8.34
21-383498.12-432454.79 -8.83
22-382674.25-431893.55 -7.20
23-382674.12-431913.55 -7.50
24-382678.12-431894.79 -7.30
25-383347.90-432500.64 0.00
26-383326.79-432462.60 0.00

19

NODE NO. X-COORD Y-COORD Z-COD
27-382818.12-431934.79 -10.62
28-382818.12-431954.79 -10.71
29-382838.12-431954.79 -11.15
30-382898.12-432154.79 -12.54
31-382918.12-432174.79 -13.61
32-382918.12-432154.79 -12.27
33-383361.77-432443.19 0.00
34-383344.28-432452.89 0.00
35-383365.39-432490.93 0.00
36-383058.12-432174.79 -16.00
37-383078.12-432194.79 -16.29
38-383078.12-432174.79 -16.52
39-383518.12-432414.79 -6.60
40-383525.02-432446.73 -7.63

4839-383498.12-431974.79 -8.01
4840-383538.12-431954.79 -6.98
4841-383558.12-431934.79 -6.82
4842-383558.12-431914.79 -6.50
4843-383558.12-431854.79 -6.12
4844-383538.12-431854.79 -7.47
4845-383558.12-431794.79 -2.16
4846-383478.12-432454.79 -10.00
4847-383478.12-432394.79 -3.78
4848-383558.12-431774.79 -1.41
4849-383558.12-432154.79 -9.36
4850-383518.12-432114.79 -10.79
4851-383518.12-432094.79 -10.35
4852-383518.12-432074.79 -9.92
4853-383518.12-432054.79 -9.39
4854-383518.12-432034.79 -8.77
4855-383518.12-432014.79 -8.13
4856-383518.12-431994.79 -7.55
4857-383518.12-431974.79 -7.63
4858-383518.12-431914.79 -9.07
4859-383518.12-431894.79 -9.01
4860-383538.12-431794.79 -2.55
4861-383538.12-432114.79 -9.77
4862-383538.12-432094.79 -9.38
4863-383538.12-432034.79 -7.82
4864-383538.12-431934.79 -7.68
4865-383538.12-431874.79 -7.53
4866-383538.12-431834.79 -6.86
4867-383538.12-431814.79 -4.76
4868-383538.12-432174.79 -10.70
4869-383618.12-432214.79 -1.19
4870-383594.06-431745.10 0.00
9999 /

20

Appendix B
Sample Input for HARBD

21

INPUT DATA FOR FIARBD

NODE XY COORDS. NODE XY COORDS. NODE XY COORDS.

1 820.94 -556.67 2 820.27 -576.77 3 802.93 -576.04
4 820.98 -602.88 5 820.42 -522.92 6 782.96 -575.72
7 820.86 -537.66 8 803.27 -556.07 9 783.28 -555.75

10 820.21 -517.61 11 820.71 -633.81 12 802.58 -596.09
13 802.26 -616.07 14 782.60 -595.76 15 762.94 -575.38
16 762.59 -595.43 17 803.59 -536.08 18 783.60 -535.76
19 763.27 -555.39 20 820.35 -497.64 21 803.92 -516.11
22 782.29 -615.75 23 742.96 -575.06 24 742.61 -595.08
25 783.94 -515.78 26 763.60 -535.42 27 722.95 -574.71
28 743.29 -555.08 29 820.70 -477.67 30 804.27 -496.06
31 784.29 -495.74 32 823.47 -463.08 33 722.60 -594.75
34 763.92 -515.44 35 743.61 -535.09 36 702.94 -574.45
37 723.28 -554.73 38 810.98 -462.63 39 804.60 -476.09

4480 694.78 420.26 4481 680.98 442.28 4482 666.48 463.84
4483 651.30 484.92 4484 635.45 505.51 4485 618.95 :25.58
4486 601.82 545.12 4487 584.07 564.09 4488 565.73 582.49
4489 546.80 600.30 4490 527.31 617.48 4491 507.29 634.04
4492 486.74 649.94 4493 465.70 665.18 4494 444.18 679.74
4495 422.20 693.61 4496 399.79 706.76 4497 376.98 719.19
4498 353.77 730.88 4499 330.21 741.83 4500 306.31 752.01
4501 282.09 761.43 4502 257.58 770.06 4503 232.81 777.91
4504 207.81 784.96 4505 182.58 791.21 4506 157.18 796.64
4507 131.61 801.26 4508 105.90 805.06 4509 80.09 808.04
4510 54.20 810.19 4511 28.25 811.51 4512 2.27 812.00
4513 -23.71 811.65 4514 -49.67 810.48 4515 -75.57 808.48
4516 -101.40 805.64 4517 -127.12 801.99 4518 -152.72 797.51
4519 -178.16 792.22 4520 -203.41 786.11 4521 -228.46 779.20
4522 -253.27 771.49 4523 -277.82 762.99 4524 -302.09 753.71
4525 -326.05 743.66 4526 -349.68 732.85 4527 -372.95 721.29
4528 -395.83 708.98 4529 -418.32 695.96 4530 -440.37 682.22
4531 -461.97 667.78 4532 -483.10 652.66 4533 -503.73 636.87
4534 -523.85 620.42 4535 -543.43 603.34 4536 -562.46 585.65
4537 -580.91 567.35 4538 -598.76 548.48 4539 -616.01 529.04
4540 -632.62 509.06 4541 -648.58 488.56 4542 -663.88 467.56
4543 -678.50 446.08 4544 -692.42 424.14 4545 -705.64 401.77
4546 -718.13 378.99 4547 -729.89 355.82 4548 -740.90 332.28
4549 -751.15 308.41 4550 -760.63 284.22 4551 -769.34 259.73
4552 -777.25 234.99 4553 -784.38 210.00 4554 -790.69 184.80
4555 -796.20 159.40 4556 -800.89 133.85 4557 -804.76 108.15
4558 -807.81 82.35 4559 -810.03 56.46 4560 -811.43 30.52
4561 -811.99 0.00

22

INPUT DATA FOR HARBD

ELE NODE NUMBERS DEPTH FRIC. COEF.

1 1736 1807 1811 -13.72 0.05
2 238 212 237 -8.96 0.05
3 238 237 263 -9.30 0.05
4 265 263 287 -9.98 0.05
5 242 263 265 -10.30 0.05
6 16 22 14 -2.14 0.05
7 16 14 6 -3.63 0.05
8 16 6 15 -4.70 0.05
9 15 6 9 -5.79 0.05
10 9 19 15 -6.78 0.05
11 19 9 18 -7.36 0.05
12 19 18 26 -8.04 0.05
13 26 18 25 -7.97 0.05
14 26 25 34 -8.47 0.05
15 34 25 31 -8.05 0.05

8646 4547 4548 4448 -15.00 0.05
8647 4448 4548 4449 -15.00 0.05
8648 4548 4549 4449 -15.00 0.05
8649 4449 4549 4450 -12.00 0.05
Sb50 4549 4550 4450 -15.00 0.05
8651 4450 4550 4451 -12.00 0.05
8652 4550 4551 4451 -12.00 0.05
8653 4551 4552 4451 -12.00 0.05
8654 4451 4552 4452 -12.00 0.05
8655 4552 4553 4452 -12.00 0.05
8656 4452 4553 4453 -12.00 0.05
8657 4553 4554 4453 -12.00 0.05
8658 4453 4554 4454 -12.00 0.05
8659 4554 4555 4454 -12.00 0.05
8660 4454 4555 4455 -12.00 0.05
8661 4555 4556 4455 -12.00 0.05
8662 4455 4556 4457 -12.00 0.05
8663 4556 4557 4457 -10.00 0.05
8664 4457 4557 4456 -10.00 0.05
8665 4456 4557 4458 -10.00 0.05
8666 4557 4558 4458 -10.00 0.05
8667 4458 4558 4459 -10.00 0.05
8668 4558 4559 4459 -10.00 0.05
8669 4459 4559 4460 -10.00 0.05
8670 4559 4560 4460 -10.00 0.05
8671 4460 4560 4462 -10.00 0.05
8672 4560 4561 4462 -10.00 0.05
8673 4561 4461 4462 -10.00 0.05
8674 4394 4483 4393 -20.00 0.05

23

INPUT DATA FOR HARBD- BOUNDARY ELEMENTS

REFLEC. REF. REF.
ID# ELE COEF.ID# ELE COEF. ID# ELE COEF.

1 7874 0.00 2 8238 0.00 3 7873 0.00
4 7841 0.00 5 7805 0.25 6 8468 0.25
7 8470 0.25 8 7650 0.25 9 7655 0.25

10 7298 0.25 11 7297 0.25 12 7296 0.35
13 8487 0.00 14 7516 0.25 15 7585 0.35
16 8225 0.35 17 8236 0.35 18 8237 0.35
19 8371 0.35 20 7582 0.35 21 8223 0.35
22 7649 0.35 23 7647 0.35 24 8673 0.00
25 8376 0.35 26 7711 0.35 27 7907 0.35
28 8079 0.35 29 7710 0.35 30 8379 0.35

261 8298 0.25 262 8296 0.25 263 8014 0.25
264 8013 0.25 265 8004 0.25 266 8001 0.25
267 8039 0.25 268 7999 0.25 269 8435 0.25
270 7997 0.25 271 8432 0.25 272 8278 0.25
273 8292 0.25 274 269 0.00 275 174 0.00
276 90 0.00 277 8288 0.00 278 8284 0.00
279 7963 0.25 280 7964 0.25 281 7967 0.25
282 7969 0.25 283 7971 0.25 284 7970 0.25
285 6789 0.25 286 6726 0.25 287 6655 0.25
288 7635 0.25 289 8172 0.25 290 6779 0.25
291 6208 0.25 292 6142 0.25 293 5880 0.25
294 5815 0.25 295 7981 0.25 296 7952 0.25
297 7953 0.25 298 7987 0.25 299 7938 0.25
300 7939 0.25 301 7941 0.25 302 8179 0.25
303 7943 0.25 304 7944 0.25 305 7946 0.25
306 7947 0.25 307 7948 0.25 308 7950 0.25
309 8190 0.25 310 8392 0.25 311 4108 0.25
312 4059 0.25 313 4110 0.25 314 8095 0.25
315 8097 0.25 316 7959 0.25 317 8101 0.25
318 8103 0.25 319 8105 0.25 320 7923 0.25
321 7920 0.25 322 8111 0.25 323 7988 0.25
324 8173 0.25 325 8115 0.25 326 8117 0.25
327 8119 0.25 328 8121 0.25 329 8123 0.25
330 7978 0.25 331 8127 0.25 332 8129 0.25
333 8131 0.25 334 8133 0.25 335 8135 0.25
336 8137 0.25 337 8139 0.25 338 7934 0.25
339 P186 0.25 340 7933 0.25 341 7929 0.25
342 7927 0.25 343 7925 0.25 344 7924 0.25
345 7595 0.25 346 7591 0.25 347 8199 0.35
348 3396 0.30

24

Appendix C
Source Code for TABTRX

This appendix lists the source cude for six programs which are required to extract
surface data from ESP. The six programs are:

TABTRX.C - This file is the heart of the program. It opens the design file; gets
the shapes, node numbers, and coordinates; and creates the
ASCII file.

TSTRUCT.H - This file sets up the structures which are used by TABTRX.C.

DFPI_OPEN.C - This file provides the interface to the design file required by
TABTRX.C.

SUPPORT.C - This is a series of subroutines which perform various tasks from
integer to string conversion to memory allocation.

GEOMETRY.C - This file calculates lengths and slopes of lines for TABTRX.C.

GEOMETRY.H - This file contains structures used by GEOMETRY.C.

25

TBTRX. C

/* DESCRIPTION:
This routine initializes variables and retrives all required
information from the user. Specifically it initializes:

sdata->shapelist sdata->nextpoint
sdata->pointtree sdata->nextmidpnt
sdata->linetree sdata->nextshape
order

Specifically it retrieves from the user:
Name of design file to extract triangles from (filespec)
Level to search for Triangulated Surface Model (level)
Text Height (info->textheight)
Level Corner Points are to be placed (info->pointlevel)
Level Mid-Points are to be placed (info->midpntlevel)
Level Shape Numbers are to be placed (info->shapelevel)
Level Shape Number Circles are placed on (info->circlelevel)
Name of the ASCII output file (info->outputfile)

The routine also opens the design file, determines if it is a
valid 3D design file, and read out the Global Origin, sub-units
and positional units if it is a 3D file. It also sets the text
width equal to the text height.

PARAMETERS:
sdata (out) - structure to hold pointers to tree/list roots and
the next number to assign to nodes added to these structures.
lktranspec (in/out) - structure to hold the design file name in
rad50 format.
info (out) - structure to hold information needed to output
graphics to the design file.
order (out) - root pointer to the point ordering tree.

SAMPLE CALL:
Initialize (&shapedata, lktran_file, &information, &(ordertree)); *1

void Initialize (sdata, lktranspec, info, order)
struct shapestruct *sdata;
short lktranspec(7];
struct storagetype *info;
struct ordernode **order;

char filespec[30]; /* Design file to read */
short returncode; /* Intergraph Return Code from dfpi/dfpo

processes */
short elemb(768]; /* Buffer to place retrieved elements */
short one = 1; /* used by dfpi/dfpo to reference a one

by address */
int level; /* used to set level of search to

request elements */
/* Initialize Variables */

*order = NULL;
sdata->shapelist = NULL;

26

sdata->pointtree = NULL;
sdata->linetree = NULL;
sdata->nextpoint = 1;
sdata->nextmidpnt = 1;
sdata->nextshape = 1;

/* Prompt for design file and retrieve */
printf ("\nEnter Name of File to Extract Surface Points From: ");
scanf ("%s", filespec);

/* Open Design FIle */
OpenDFPI (filespec, lktranspec);

/* Call Routine to Read Design File Header */
readheader (lktranspec, elemb);

/* From Header Determine if design file is 3D or not */
if (!ThreeD (elemb)) (
printf ("\nDesign File is Not 3D");
dedfpi(&one);
exit(;

/* From Header Retrieve Sub and Positional units & Global Origin */
GetSuPu (elemb, &(info->subunits), &(info->posunits));
GetGO (elemb, &(info->globalorigin(O]),&(info->globalorigin[l]),

&(info->globalorigin[2]));
/* Retrieve Search Level Information */

printf ("\nEnter Level to Search for Triang. Surface Model: ");
scanf ("%d", &level);

/* Set search Level in Design File */
SetSearch (lktranspec, level, 6);

/* Retrieve text height and set text width based on height */
printf ("\nEnter height of Characters in Working Units: ");
scanf ("%f", &info->textheight);
info->textwidth = info->textheight;

/* Retrieve Additional Level Information */
printf ("\nEnter Level Corner Points are to be placed: ");
scanf ("%d", &info->pointlevel);
printf ("\nEnter Level Mid-Points are to be placed: ");
scanf ("%d", &info->midpntlevel);
printf ("\nEnter Level Shape Numbers are to be placed: ");
scanf ("%d", &info->shapelevel);
printf ("\nEnter Level Shape Number Circles are to be placed:");
scanf ("%d", &info->circlelevel);

/* Retrieve ASCII output file name */
printf ("\nEnter Name of ASCII Output File: ");
scanf ("%s", info->outputfile);
printf ("\n\nReading Triangles");

I

/* DESCRIPTION:
This routine retrieves a shape from the design file into a
buffer. It then reads the buffer and extracts the x, y, & z
values of the points which make up the shape.

27

VALUE RETURNED:
TRUE -- if a shape was retrived from the design file
FALSE -- if a shape was not retrieved from the design file

PARAMETERS:
lktran (in) - Rad5O file specification of the design file to read
points (out) - Arrary to hold the three points retrieved from the

element buffer.
info (in) - Structure which hold the global origin, sub-units per
master units and positional units per sub-unit values needed for
conversion of the units of resolution point values retrieved from
the element buffer to design file working units.

SAMPLE CALL: ReadShape (lktran_file, pnts, information);

NOTES: The buffer holds the element retrieved from the design
file. However, the buffer values for the x, y & z coordinates of
the shape corner points are given in Units Of Resolution (UOR).
To convert these values to meaningful Read World Units (RWU) the
following formula is needed:

RWU = (GO + UOR)/(SU * PU)
where: RWU = Real World Units

GO = Global Origin
UOR = Units of Resolution
SU = Sub Units / Master Units
PU = Positional Units / Sub Units */

int ReadShape (lktran, points, info)
short lktran[7];
struct point points[3];
struct storagetype info;

short elembuf[768]; /* buffer to hold retrieved element */
short buflen = 768; /* length of the buffer to hold

retrieved element in */short returncode; /* code returned by the request to
retrieve element */

int i; /* loop control variable */
long *xpnt; /* pointers used to access */
long *ypnt; /* the corner points */
long *zpnt; /* of the shape */

/* Print Message To Tell User Process Is Working */
printf (".");

/* Retrieve Next Shape from Buffer */
reqele (elembuf, &buflen, &returncode);

/* Make Sure Shape Was Retrieved */
if (returncode == 0) (

/*If Shape was Retrieved, Extract Corner Points From Element Buffer*/
for (i=0; i<3; i++) (

/* Extract X part of Point */
xpnt = &elembuf[19+(i*6)];

points(i].x= (info.globalorigin[O]+*xpnt)/(info.subunits*info.posunits)

28

* Extract Y part of Point */
ypnt = &elembuf[21+(i*6)];

points[i].y= (info.globalorigin(l]+*ypnt)/(info.subunits*info.posunits);
/* Extract Z part of Point */

zpnt = &elembuf[23+(i*6)];
points(i].z= (info.globalorigin[2]+*zpnt)/(info.subunits*info.posunits);

/* Return True as an Element was Found */
return TRUE;

else
/* Return False as an Element was Not Found */

return FALSE;

/* DESCRIPTION:
This routine prints the number assigned to the point to the out-
put file as part of a shape definition line. The routine also
determines if the point has been annotated in the design file.
If if has not yet been annotated, it is and then the structure of
the point is marked as being annotated.

PARAMETERS:
fp (in) - File to print point number as part of a shape
pt (in/out) - Pointer to the pointnode struct to be printed.
pl (in) - Level to annotate point on in design file.
hgt (in) - Height of text to annotate point in dgn file.
wdt (in) - Width of text to annotate point in dgn file.
GO (in) - Global origin in the design file.
SU (in) - Sub Units/Master Unit in design file.
PU (in) - Positional Units/Sub Unit in design file.

SAMPLE CALL: PrintPoint(fout, nextshape->p2, info.pointlevel,
info.textheight,info.textwidth,info.globalorigin,info.subunits,
info.posunits); */

void PrintPoint (fp, pt, pl, hgt, wdt, GO, SU, PU) FILE *fp;
struct pointnode *pt;
int pl, SU, PU;
double GO(3];
float hgt, wdt;

char strng[10]; /* Used to convert the point number in
annotation to an integer *7

/* Print Point to ASCII Output FIle */
fprintf (fp, "%5d", pt->pointnum);

/* Determine If Point Has Been Annotated In Design File */
if (!pt->numbered) (

7* If Not Already Annotated Make Point as So *7
pt->numbered = TRUE;

7* Convert Point Number to Annotate with to a String *7
itoa (pt->pointnum, strng);

7* Annotate Point in Design File To Place 3D Text *7

29

ptext3d (pt->pnt.x, pt->pnt.y, pt->pnt.z, strng, pl, hgt,
wdt, GO, SU, PU, 3);

/* DESCRIPTION:
This Routine Prints out the Mid-Point number assigned to a line
between two points as part of a shape definition. It also
determines if the Mid-Point has been annotated in the design
file. If the Mid-Point has not been annotated it is and it is
also marked as such.
PARAMETERS:

fp (in) - ASCII file to output Mid-Point number to.
pnum (in) - Last Number Assigned to the Corner Points.
mlvl (in) - Level to Annotate Mid-Point Number in DGN
ht (in) - Height of the Text to Annotate With.
wt (in) - Width of the Text to Annotate With.
GO (in) - Global Origin used in the design file.
SU (in) - Sub Units/Master Unit in design file.
PU (in) - Positional Units/Sub Unit in design file.
11 (in/out) - Pointers to the three
12 (in/out) - linenode structures
13 (in/out) - in the shape.
p1 (in) Pointers to the two points of the line to be
p2 (in) -- annotated in DGN File and printed to ASCII

SAMPLE CALL:
PrintLine (fout, sdata.nextpoint, info.midpntlevel, info.textheight,
info.textwidth, info.globalorigin, info.subunits, info.posunits,
nextshape->ll,nextshape->12,nextshape->13,nextshape->pl,nextshape->p2)

NOTES: The number actually printed to ASCII and Design File is
calculated by taking the last point used for numbering the points
in the file and adding 200 and the number of the midpoint. */

void PrintLine (fp, pnum, mlvl, ht, wt, GO, SU, PU, 11, 12, 13,
pl, p2) FILE *fp;

double GO[3];
float ht, wt;
int pnum, mlvl, SU, PU;
struct linenode *11, *12, *13;
struct pointnode *pl, *p2;

char *strng[10]; /*Used to convert the midpnt number to a string "
double x, y, z; /* Used to hold x,y,z location of the

annotated string in the design file */
/* Compare points which make up line with those of the first

line passed to routine */
if (((pl==ll->pl)&&(p2==1->p2))I ((pl==ll->p2)&&(p2==ll->pl)))

/* Print mid-point number to ASCII file */
fprintf (fp, "%5d", ll->midpointnum+pnum+200);

/* Check to determine if line has been annotated */
if (!ll->numbered)

30

/* If not annotated yet mark it as annotated *
ll->numbered = TRUE;

7* Convert annotation number to use into a string *
itoa (ll->midpointnum+pnum+200, sting);
7*Calculate point to place annotation text at *
x = (ll->pl->pnt.x + ll->p2->pnt.x)/2;
y = (l1->pl->pnt.y + ll->p2->pnt.y)/2;
z = (ll->pl->pnt.z + ll->p2->pnt.z)/2;
7*Write annotation text to design file *
ptext3d (x, y, z, sting, mlvi, ht, wt, GO, SU, PU, 3);

7* Compare points which make up line with those of the second
line passed to routine *7

if (((pl==12->pl)&&(p2==12->p2)) 1((pl==12->p2)&&(p2==12->pl)))

/* Print mid-point number to ASCII file *
fprintf (fp, 1'%5d", 12->midpointnum+pnum+200);

/* Check to determine if line has been annotated *
if (!12->numbered)(

7* If not annotated yet mark it as annotated *
12->numbered = TRUE;

7* Convert annotation number to use into a string *
itoa (12->midpointnum+pnum+200, sting);
7*Calculate point to place annotation text at *
x = (12->pl->pnt.x + 12->p2->pnt.x)/2;
y = (12->pl->pnt.y + 12->p2->pnt.y)/2;
z = (12->pl->pnt.z + 12->p2->pnt.z)/2;
7*Write annotation text to design file *
ptext3d (x, y, z, sting, mlvl, ht, wt, GO, SU, PU,3)

7*Compare points which make up line with those of the third
line passed to routine *7

if (((pl==13->pl)&&(p2==13->p2)) :((pl==13->p2)&&(p2==13->pl)))

7* Print mid-point number to ASCII file *
fprintf (fp, "1%5d", 13->midpointnum+pnum+200);

7* Check to determine if line has been annotated *
if (!13->numbered)

7* If not annotated yet mark it as annotated *
13->numbered = TRUE;

7* Convert annotation number to use into a string *
itoa (13->midpointnum+pnum+200, strng);
7*Calculate point to place annotation text at *
x = (13->pl->pnt.x + 13->p2->pnt.x)/2;
y = (13->pl->pnt.y + 13->p2->pnt.y)/2;
z = (13->pl->pnt.z + 13->p2->pnt.z)/2;
7*Write annotation text to design file *
ptext3d (x, y, z, sting, mlvi, ht, wt, GO, SU, PU, 3);

31

I
I
/* DESCRIPTION:
This routine calculates the x, y & z location to place the shape
number and its circle at.
PARAMETERS:

x (out) - Pointers to the locations to place the
y (out) - calculated x, y, and z values for their
z (out) - return to calling program.
pl (in) - Pointers to the locations of the
p2 (in) - three points which make up the
p3 (in) - shape to annotate.

SAMPLE CALL:
calcxyz (&x,&y,&z,nextshape->pl,nextshape->p2,nextshape->p3);

NOTES: Values are calcuated by taking average location of points. */

void calcxyz (x, y, z, pl, p2, p3) double *x, *y, *z;
struct pointnode *pl, *p2, *p3;

=
*x = (pl->pnt.x + p2->pnt.x + p3->pnt.x)/3;
*y = (pl->pnt.y + p2->pnt.y + p3->pnt.y)/3;
*= (pl->pnt.z + p2->pnt.z + p3->pnt.z)/3;

/* DESCRIPTION:
This recursive routine prints the points in the tree of points
ordered by point numbers assigned to them. They are printed in
the format:

0000000001111111111222222222233333333334
columns: 1234567890123456789012345678901234567890

10 234.45 221.23 123.22
PARAMETERS:

otr (in) - pointer to the root of the ordered point tree.
fo (in) - File to write points out to.

SAMPLE CALL: printotree (otree, fout); */

void printotree (otr, fo) struct ordernode *otr;
FILE *fo;

/* Determine that a node exists here first */
if (otr != NULL) {

/* Print the left most branch of the tree first */
printotree (otr->left, fo);

/* Print the current node */
fprintf (fo, "%10d%10.21f%10.21f%10.21f\n", otr->pntr->pointnum,
otr->pntr->pnt.x, otr->pntr->pnt.y, otr->pntr->pnt.z);

/* Print the right most branch of the tree last */
printotree (otr->right, fo);

I

/* DESCRIPTION:

32

This routine prints out the shape definition to the ASCII output
file. It determines which way it must list the points of the
shape so it is specified in counter-clockwise fashion. Starting
from the point with the least x value, the routine prints the
line from the least point with the smallest slope, then the point
at the end of that particular line, then the line to the remain-
ing point, then the remaining point and finally the line connect-
ing the remaining point to the least point.

PARAMETERS:
fp (in) - File to write information to
least (in) - Pointer to the point defining the shape with

the smallest x value
pl (in) - First of the remaining points defining shape
p2 (in) - Second of the remaining points defining shape
np (in) - Number of points retrieved from dgn file +1
info (in) - Structure holding information needed to

generate graphical output to a design file.
ns (in) - Pointer to the shape which is being printed to

output file
SAMPLE CALL: PrintShape (fout, lp, nextshape->p2, nextshape->p3,
sdata.nextpoint, info, nextshape);

NOTES: Slope is used to insure the points are specified in a
counter-clockwise fashion around the shape. */

void PrintShape (fp, least, pl, p2, np, info, ns) FILE *fp;
struct pointnode *least, *pl, *p2;
int np;
struct storagetype info;
struct shapenode *ns;

double slopel; /* Slope between least and first point
double slope2; /* Slope between least and second point */
double slope(); /* Function to calc slope between pnts */

/* Calculate Slopes */
slopel = slope(least->pnt, pl->pnt);
slope2 = slope(least->pnt, p2->pnt);

/* Determine which slope is smaller */
if (slopel < slope2) (

/* Print Shape From Least to pl to p2 */
/* Print Line From Least to P1 */
PrintLine (fp, np, info.midpntlevel, info.textheight, info.textwidth,
info.globalorigin, info.subunits, info.posunits, ns->ll, ns->12,
ns->13, least, pl);
/* Print Point P1 */
PrintPoint (fp, pl, info.pointlevel, info.textheight, info.textwidth,
info.globalorigin, info.subunits, info.posunits);
/* Print Line From P1 to P2 */
PrintLine (fp, np, info.midpntlevel, info.textheight, info.textwidth,
info.globalorigin, info.subunits, info.posunits, ns->ll, ns->12,
ns->13, pl, p2);

33

/* Print Point P2 */
PrintPoint (fp, p2, info.pointlevel, info.textheight, info.textwidth,
info.globalorigin, info.subunits, info.posunits);
/* Print Line From P2 to Least */
PrintLine (fp, np, info.midpntlevel, info.textheight, info.textwidth,
info.globalorigin, info.subunits, info.posunits, ns->ll, ns->12,
ns->13, p2, least);

I
else {

/* Print Shape From Least to p2 to pl */
/* Print Line From Least to P2 */
PrintLine (fp, np, info.midpntlevel, info.textheight, info.textwidth,
info.globalorigin, info.subunits, info.posunits, ns->ll, ns->12,
ns->13, least, p2);
/* Print Point P2 */
PrintPoint (fp, p2, info.pointlevel, info.textheight, info.textwidth,
info.globalorigin, info.subunits, info.posunits);
/* Print Line From P2 to P1 */
PrintLine (fp, np, info.midpntlevel, info.textheight, info.textwidth,
info.globalorigin, info.subunits, info.posunits, ns->l1, ns->12,
ns->13, p2, pl);
/* Print Point P1 */
PrintPoint (fp, pl, info.pointlevel, info.textheight, info.textwidth,
info.globalorigin, info.subunits, info.posunits);
/* Print Line From P1 to Least */
PrintLine (fp, np, info.midpntlevel, info.textheight, info.textwidth,
info.globalorigin, info.subunits, info.posunits, ns->ll, ns->12,
ns->13, pi, least);

}
)
/* DESCRIPTION:
This routine is responsible for the creation of the ASCII output
file which will be the input file for RMA-II. It prints to the
file the shape definitions followed by the points and their
respective x, y & z values.

PARAMETERS:
sdata (in)-Structure holding information on shapes.(See TSTRUCT.H)
info (in) - Structure holding information needed for output to the

.DGN file. (for More See TSTRUCT.H)
otree (in) - Pointer to root of tree of ordered points.

SAMPLE CALL: WriteFile (shapedata, information, ordertree); */

void WriteFile (sdata, info, otree) struct shapestruct sdata;
struct storagetype info;
struct ordernode *otree;

{
struct shapenode *nextshape;/* Pointer to Next Shape to

Print in List */
struct pointnode *lp; /* Pointer to the Point with the

smallest x value */

34

FILE *fout; /* File to write ASCII output to */
int count = 1; /* Used to Count Number Of Shape

Processed */
double x, y, z = 0; /* Values to Hold Location to print

Shape numbers and circles */
char strng(20]; /* Used to Convert Shape Number to

a string */
/* Initialize Nextshape Pointer */

nextshape = sdata.shapelist;
/* Open ASCII file, if successful write info. to file */

if ((fout = fopen (info.outputfile, "w")) != NULL) (
/* Print Processing Message For User */

printf ("\n\nCreating ASCII Output File");
/* While Shapes Exist in List to Print */

while (nextshape != NULL) (
/* Print Processing Message For User */

printf (".");
/* Print Shape Number to ASCII file */

fprintf (fout, "%5d", count);
/* Compute XYZ values to place shape number and circle */

calcxyz (&x, &y, &z, nextshape->pl, nextshape->p2, nextshape->p3);
/* Convert shape Number to String */

itoa (count, strng);
/* Write Shape Number to Design File */
ptext3d (x, y, z, strng, info.shapelevel, info.textheight,
info.textwidth, info.globalorigin, info.subunits, info.posunits, 1);
/* Circle Number in Design File */

circle (info.textheight*2, x, y, z, info.circlelevel, 1);
/* Increment Shape Counter */

count++;
/* Find Point with the Least X Value */

lp = least (nextshape->pl, nextshape->p2, nextshape->p3);
/* Print the Point With Least X Value to ASCII output file */
PrintPoint (fout, lp, info.pointlevel, info.textheight,
info.textwidth, info.globalorigin, info.subunits, info.posunits);
/* Determine which point was least point and call appropriate

routine to print remainder of shape */
if (lp == nextshape->pl)
PrintShape (fout, lp, nextshape->p2, nextshape->p3,

sdata.nextpoint, info, nextshape);
else if (lp == nextshape->p2)
PrintShape (fout, lp, nextshape->pl, nextshape->p3,

sdata.nextpoint, info, nextshape);
else
PrintShape (fout, lp, nextshape->pl, nextshape->p2,

sdata.nextpoint, info, nextshape);
/* Add Termination string to end of shape definition line */

fprintf (fout, " 0 0 x /\n",;
/* Advance to Next Shape in List */

nextshape = nextshape->next;
)

/* Mark End of Shape Definition Section */

35

fprintf (fout, " 9999 /\n") ;
/* Generate Point Definition Section */

printotree (otree, fout);
/* End Point Definition Section */

fprintf (fout, " 9999 /\n");
fclose (fout);

)

/* DESCRIPTION:
This recursive routine sorts the points in the point tree by the
number they were assigned and places them in the order tree.

PARAMETERS:
otr (in/out) - Pointer to the root of the order tree
ptree (in) - Pointer to the root of the point tree

SAMPLE CALL: OrderPoints (&(ordertree), shapedata.pointtree); */

void OrderPoints (otr, ptree)
struct pointnode *ptree;
struct ordernode **otr;

{
if (ptree != NULL) {

/* Order the left part of the point tree first */
OrderPoints (otr, ptree->left);

/* Order the current node */
*otr = InsertOnode (*otr, ptree);

/* Order the right part of the point tree last */
OrderPoints (otr, ptree->right);

)
)
main ()

/* Declaration of DFPI and DFPO variables */
short lktranfile[*/]; /* Holds the rad5O name of .DGN file */
short one = 1; /* Used so a Pointer to Constant one exits */
struct storagetype information;/* Holds Information Captured

from DGN File */
/* Declaration of the shapestructure */

struct shapestruct shapedata; /*Holds roots to trees and lists*/
struct point pnts(3]; /* Holds points retrieved from shape*/
struct ordernode *ordertree;/*Pointer to root of ordered pnt tree */
Initialize (&shapedata, lktran_file, &information, &(ordertree));

/* Read Shape Elements From Design File Until All Are Read */
while (ReadShape (lktran_file, pnts, information))

/* Put Shape In Structure to Hold Them */
InsertShape(pnts, &shapedata);

/* Reorder Points in New Tree To Sort By Assigned Number */
OrderPoints (&(ordertree), shapedata.pointtree);

/* Generate Output File */
WriteFile (shapedata, information, ordertree);

/* Close opened Design File */
dedfpi (&one);

36

TSTRUCT.H

This file contains structures needed by the program TABRRX.C.

point - structure to hold xyz values associated with a point.

pointnode - a tree node to hold a point, a number which is
assigned to it by the program, a value to determine if the point
has been labled in the design file and the left and right
pointers to the remainder of tree

linenode - a tree node to hold the two pointers to pointnodes
which make up a line, a number which is assigned by the program
as the midside node, a value to determine if the point has been
labled in the design file and the left and right pointers to the
remainder of tree.

shapenode - a linked list node (the list is not sorted) to hold
the number of the shape, pointers to the three linenodes and the
three pointnodes which make up the shape and a pointer to the
next shape in the list.

shapestruct - a structure to hold the 3 root pointers to the
shape list, the point tree, and the line tree and the counter
variables which numLer the point nodes, the mid-point nodes and
the shapes.

storagetype - a structure to hold miscellaneous items related to
placing graphics in the design file. Items held by this
structure include: text height, text width, global origin of the
design file (x, y, z), number of sub-units per master unit,
number of positional units per sub-unit, level to place corner
point numbers on, level to place mid-point numbers on, level to
place shape numbers on, level to place shape number circles on,
and the ASCII name of the output file.

common - a structure to hold the parameters used to call PRDFPI
to perform input to an IGDS design file.

ordernode - a tree node used to order the points that are num-
bered in ascending order. Each node holds a pointer to a point-
node and pointers to left and right ordernodes in the tree. */

struct point (
double x, y, z;

struct pointnode
struct point pnt;
int pointnum;
int numbered;
struct pointnode *right, *left;

37

struct linenode
int midpointnum;
int numbered;
struct pointnode *pl, *p2;
struct linenode *right, *left;

struct shapenode
int shapenum;
struct linenode *11, *12, *13;
struct pointnode *pl, *p2, *p3;
struct shapenode *next;

struct shapestruct
struct shapenode *shapelist;
struct linenode *linetree;
struct pointnode *pointtree;
int nextpoint;
int nextmidpnt;
int nextshape;

struct storagetype
float textheight;
float textwidth;
double globalorigin(3];
int subunits;
int posunits;
int pointlevel;
int midpntlevel;
int shapelevel;
int circielevel;
char outputfile(30J;

struct common{
short dummy[16];
short crien;
short crcode;
short crdata[766];

struct ordernode
struct pointnode *pntr;
struct ordernode *left, *right;

/* In order to be able to use DFPI this common data area called
"ireg" must be declared at the top of the program. *

struct common ireq;)

38

DFPI OPEN.C
/* DESCRIPTION:
This routine converts a string to all upper case characters. If
non-alpha characters are encountered, they are not converted.
Upper case characters are also left alone.

PARAMETERS: strng (in/out) - string to convert to upper case.
SAMPLE CALL: supper (string); */

void supper (strng)
char *strng;

int count = 0; /* Used to Step Through the String */
while (strng(count] != '\0') (

strng~count] = toupper(strng[count]);
count++;

I

/* DESCRIPTION:
This routine opens a design file for operations which include
input and output of information from the file.

PARAMETERS:
fname (in) - name of the design file to open;
lktranspec (in/out) - the lktran file spec. of file opened

SAMPLE CALL: OpenDFPI ("triangle.dgn", lktran file);
NOTES: Refer to the ASID (Application Software Interface
Documant) for more details of this routine. */

void OpenDFPI (fname, lktran_spec)
char *fname;
short lktran-spec[7];

char termnr[3]; 7* Used to hold terminal type */
short nrchar, /* Number of characters in filename */

zero = 0, /* Creates a pointer to a Zero */
one = 1, /* Creates a pointer to a One */
returncode, /* Contains status of DFPI/DFPO call *7
region(2] = (0, 0); /* Region Needed by DFPI/DFPO */

/* Fill In Terminal Type */
strcpy (termnr, "EX");

/* Determine Length of filename */
nrchar = strlen (fname);

/* Convert Filename to Upper Case */
supper (fname);

/* Convert ASCII filename to RAD50 format */
lktcsi (fname, lktran spec, &nrchar, &zero, &returncode);

/* If Errors Print Message and Exit Cleanly */
if (returncode != 0) (
printf ("\nLKTCSI ERROR = %d", returncode);
exit();

39

I
/* Initialize file for Design File Processor Input */

indfpi (®ion, lktran_spec, &zero, &zero, &zero, &one,
&return_code, term_nr);

/* If Errors Print Message and Exit Cleanly */
if (returncode != 0) (
printf ("\nINDFPI ERROR = %d", return_code);
exit ();

)

/* DESCRIPTION:
This routine resets all bits in the level mask (blev) and then
sets the bit in the level mask (blev) corresponding to the value
of level. Example: if level = 24 a bit representation of (blev)
when this routine returns would be -

6666555555555544444444443333333333222222222211111111110000000000

3210987654321098765432109876543210987654321098765432109876543210

blev =
00100000000000000000000000

In this example the 23rd bit corresponds to the 24th level be-
cause bit numbering begins at 0 and level numbering begins at 1.

PARAMETERS:
level (in) - number of the bit to set in the (blev) bit mask.
blev (out) - bit mask of the levels in a design file.

SAMPLE CALL: Int2Bin (level, binlevel); */

void Int2Bin (level, blev)
int level;
short blev[4];

(
int index = 0, /* indexes the binary level bit mask */

i; /* Used to initialize the bit mask */
/* Initialize Bit Mask to Zero */

for (i = 0; i < 4; i++)
blevti] = 0;

/* Determine which part of Blev the bit to set falls in */
while (level > 16) (

index++;
level -= 16;

)
/* Set Appropriate Bit */
blev(index] = pow (2, level-i);

)

/* DESCRIPTION:
This routine sets up the search criteria DFPO will use to
determine which elements to return as reqele (request element) is
called multiple times. The search is set for a particular level

40

and type of element by this routine, but other criteria may be
set by updating or adding to this routine.

PARAMETERS:
lktranspec (in) - Dgn file to set search criteria in RAD50 format
level (in) - Level to search for elements in dgn file.
type (in) - type of elements to seach for in dgn file.

SAMPLE CALL: SetSearch (lktranspec, level, 6);
NOTES: See EDG Manual for more information of element types. */

void SetSearch (lktranspec, level, type)
int level;
int type;
short lktranspec[7];

short binlev[4);/* Bit Mask of levels to set search criteria */
short typlev[4];/* Bit Mask of elements type to search for */
short returncode;/* Holds status of call to dfrset routine */

/* Set Level Mask */
Int2Bin (level, binlev);

/* Set Type Mask */
Int2Bin (type, typlev);

/* Set Search Criteria for Design File Request Element Calls */
dfrset (0, binlev, typlev, 0, 0, 0, 0, lktranspec, &return_code);
/* If Error Print Message and Exit cleanly */

if (returncode != 0) (
printf ("\nDFRSET ERROR = %d", returncode);
exit(;

)
/* DESCRIPTION:

This routine determines if the design file is a 3D or not.
VALUE RETURNED:

The routine will return 0 if the design file is not 3D and
it will return a non-zero value if it is a 3D file.

PARAMETERS:
buffer (in) - array holding type 9 element (DGN File Header)

SAMPLE CALL: if (!ThreeD (elembuf))
printf ("\nDesign File is Not 3D");

NOTES: If the file is 3D, then the first word of the buffer
would have bits as follows:

Bit 1l11ll0000000000
Numbers 5432109876543210
Value 0000100111001000

Where bits 6 and 7 must be set to be a 3D file. */

int ThreeD (buffer)
short buffer[768];

4

41

return (buffer(O] & OxcO);

/* DESCRIPTION:
This routine retrieves the number of sub-units / master unit and
the number of positional units / sub-unit as defined in the DGN.

PARAMETERS:
elembuf (in) - array holding the type 9 (design file header)
su (out) - returns the number of sub-units/master unit.
pu (out) - returns the number of positional units/master

SAMPLE CALL: GetSuPu (elembuf, info.SU, info.PU);
NOTES:

The sub-units / master unit is stored in the buffer at
locations 556 and 557. The Positional units / sub-unit is stored
in the buffer at locations 558 and 559. (both values assume the
buffer begins at location 0 as opposed to the EDG document which
starts at location 1). */

void GetSuPu (elembuf, su, pu)
short elembuf(768];
int *su, *pu;

{
*su = elembuf[556] * pow (2, 16) + elembuf[557];
*pu = elembuf[558] * pow (2, 16) + elembuf[559];

)
/* DESCRIPTION:
This routine retrieves the Global Origin (GO) (x, y & z) for the
dgn file, provided with the type 9 dgn file header of the file.

PARAMETERS:
elembuf (in) - array holding type 9 element to retrieve GO
goxuor (out) - x-axis Global Origin in Units of Resolution
goyuor (out) - y-axis Global Origin in Units of Resolution
gozuor (out) - z-axis Global Origin in Units of Resolution

SAMPLE CALL:
GetGO (elembuf, &info.globalorigin(O], &info.globalorigin[l],

&info.globalorigin(2]);
NOTES:

The Global Origin is stored at locations 620 through 631 in
the element buffer of the design file header (type 9 element).
(assuming you count the first buffer location as 0 and not 1 as
in the EDG manual) */

void GetGO (elembuf, goxuor, goyuor, gozuor)
short elembuf[768];
double *goxuor, *goyuor, *gozuor;

(
double *xgo, /* Pointers to Double

ygo, / Variables to establish and
zgo; / Equivalence similar to FORTRAN */

xgo = &elembuf[620];
ygo = &elembuf[624];

42

zgo = &elembuf(628];
*goxuor = *xgo;
*goyuor = *ygo;
*gozuor = *zgo;

/* DESCRIPTION:
This routine sends to File Builder the string passed to it. This
is analogous to keying in the string while editing the dgn file.
VALUE RETURNED:
Returns the status code which is retrieved when prdfpi is called.
The status will indicate if the call was successful.

PARAMETERS:
string (in) - the string of characters to pass to File-Builder.

SAMPLE CALL: result = FBKeyboard (strng); */

short FBKeyboard (string)
char *string;

(
extern struct common ireq; /*Common location for FB requests*/
short nr_bytes; /*Number of chars. to pass to FB*/
short return code; /*Status code returned from FB */

/* Initialize nr _bytes with number of characters iL- s%.ring to
pass to FB */

nr_bytes = strlen(string);
ireq.crcode = 1000;

/* Set Up Request Array with code for keyboard input and
string to input */

ireq.crdata[0] = strlen(string);
lib$movc3 (&nrbytes, string, &ireq.crdata(l]);
ireq.crlen = strlen(string) / 2 + 2;
if ((strlen(string) % 2) != 0)

/* Length of FB request must be in words so if the string has an
odd number of bytes one must be added to the request length to
make it work correctly */

ireq.crlen++;
prdfpi(&returncode);

/* send request and return status code */
return return-code;

)
/* DESCRIPTION:
This routine makes request to File Builder (FB) to begin a
command such as place line (PLINE). This is the same as
selecting the command from the IGDS paper digitizer menu.

PARAMETERS:
name (in) - ASCII name of the FB command to initiate.

SAMPLE CALL: FBCommand ("PLINE");
NOTES:

43

For a complete list of available commands, the IGDS menu
file (.DGN) level 63 contains the names of the commands behind
the menu pictures. */

void FBCommand (name)
char *name;

(
extern struct common ireq; /*Common location for FB requests*/
short nrchar = 6; /*Number of chars. to pass to FB*/
short returncode; /*Status code returned from FB */
union (/*This union allows access to the*/

long buf; /* RAD 50 command name in 2 */
short cmd(2]; /* different formats */
rad50;

char fb-cmd(6]; /* used to hold the ASCII command
for conversion to RAD 50 */

short i; /* loop count variable */
short one = 1; /*used to get a pointer to a one*/

/*Make sure command is in upper case for conversion to RAD 50*/
supper (name);

/* Copy ASCII command to temporary buffer and blank fill the
empty spots to 6 characters */

for (i=0; i<6; i++)
if (name(i] != '\0')
fbcmd(i] = name[i];

else
fbcmd(i] = '

/* Convert ASCII command to RAD 50 command */
asc2rd (&fb_cmd, &rad5o.buf, &nr_char, &returncode);

/* Check Status Code and exit upon error */
if (returncode != 0) (
printf ("\nASC2RD ERROR = %d", return_code);
dedfpi (&one);
exit);

/* Fill request register with command */
ireq.crdata[0] = rad5O.cmd[0];
ireq.crdata[l] = rad50.cmd(l];
ireq.crlen = 3;
ireq.crcode = 999;

/* Execute command */
prdfpi (&returncode);

/* Check status code returned and exit upon error */
if (returncode !- 0) (
printf ('\nFB REQUEST 999 ERROR = %d", return_code);
dedfpi (&one);
exit);

)

/* DESCRIPTION:
This routine executes a reset to File Builder (FB). This equates
to pressing the reset key while in the design file.

44

PARAMETERS: none

SAMPLE CALL: FBReset); */

void FBReset ()

extern struct common ireq; /*Common location for FB requests*/
short return code; /*Status code returned from FB */
short one = 1; /* Creates a Pointer to a One */

/* Set Up Request Register to send Reset to (FB) */
ireq.crlen = 1;
ireq.crcode = 1002;

/* Make Reset Request to (FB) */
prdfpi (&return code);

/* Check Status and Exit on Error */
if (returncode != 0) {
printf ("\nFB Reset Error = %d", returncode);
dedfpi (&one);
exit(;

/* DESCRIPTION:
This routine equates to pressing a data button on the puck or
mouse. The data button has a particular x, y & z value, plus it
is also associated with a particular view.

PARAMETERS:
view (in) - view in which the data button is to be entered

x (in) - x value of data button (location)
y (in) - y value of data button (location)
z (in) - z value of data button (location)

SAMPLE CALL: FBButton (vw, xval, yval, zval);
NOTEI: Be sure to match the types of the view and data points to
insure proper execution of the routine. */

void FBButton (view, x, y, z)
short view;
long x, y, z;

(
extern struct common ireq; /*Common location for FB requests*/
short return code; /*Status code returned from FB */
short nrbytes = 4; /* used as a pointer to number of

bytes to transfer */
short one = 1; /* Creates a Pointer to a One */

/* Initialize request buffer for call */
ireq.crlen = 11;
ireq.crcode = 1006;
ireq.crdata[0] - view;
ireq.crdata(l) = 0;
ireq.crdata(2] = 0;
lib$movc3 (&nr bytes, &x, &ireq.crdata[3]);

45

lib$movc3 (&nr_bytes, &y, &ireq.crdata[5]);
lib$movc3 (&nr_bytes, &z, &ireq.crdata[7]);
ireq.crdata[9] = 0;

/* Send Data Button to (FB) */
prdfpi (&return_code);

/* Check Status and Exit upon error */
if (return code != 0) (
printf ("\nError in FBButton = %d", returncode);
dedfpi (&one);
exit();

)

/* DESCRIPTION:
This routine sets text height and width in the design file.

PARAMETERS:
height (in) - value to set text height and width

SAMPLE CALL: TX("0.125"); */

void TX(height)
char *height;

{
short result; /*Status of call to input string to FB*/
char strng[30]; /* String to Build to send to FB */
short one = 1; /* Sets up a pointer to a one */

/* Create String to Send to File Builder */
strcpy (strng, "TX=");
strcat (strng, height);

/* Send String to File Builder */
result = FBKeyboard (strng);

/* Check Status and Exit Upon Error */
if (result != 0) (
printf ("\nKeyboard Error (TX) = %d", result);
dedfpi (&one);
exit(;

/* DESCRIPTION:
This routine sets the active level in the design file.

PARAMETERS:
level (in) - level to set active in the design file.

SAMPLE CALL: LV(5); */

void LV (level)
int level;

(
short result; /*Holds status of call to File Builder*/
short one = 1; /*Gives a pointer to a value of one */
char strng(30], /*Holds the string to send to File Builder k/

lvl(lO]; /*Converts the integer level to a string */
/*Create ASCII string to send File Builder to set the active level*/

strcpy (strng, "LV-");
itoa (level, lvl);

46

strcat (strng, lvl);
/* Send String to File Builder and retrieve status */

result = FBKeyboard (strng);
/* Check Status and Exit upon error */

if (result != 0) (
printf ("\nKeyboard Error (LV) = %d", result);
dedfpi (&one);
exit(;

/* DESCRIPTION:
This routine is used to simulate a precision keyin of (XY =??)
in the design file.

PARAMETERS:
x (in) - Values of the
y (in) - location to place
z (in) - precision keyin at.

SAMPLE CALL: XY (xval, yval, zval);
NOTES: Values passed must be double precision floating point. */

void XY (x, y, z)
double x, y, z;

{
char string(30]; /*String created of prec. keyin to pass FB*/
char first[20]; /*Stores converted double float values */
short result; /*Stores status returned from File Builder Call*/
short one = 1; /*Gives a pointer to the value one */

/* Set up String for File Builder */
strcpy (string, "XY=");
dtoa (x, first, 2);
strcat (string, first);
strcat (string, ",");
dtoa (y, first, 2);
strcat (string, first);
strcat (string, 11,");
dtoa (z, first, 2);
strcat (string, first);

/* Send string to File Builder */
result = FBKeyboard (string);

/* Check Status and Exit Upon Error */
if (result != 0) (
printf ("\nKeyboard Error (XY) = %d", result);
dedfpi (&one);
exit(;

/* DESCRIPTION:
This routine sets the active color in the design file.

PARAMETERS:
color (in) - number of the color to set as the active color.

SAMPLE CALL: CO(3); */

47

void CO(color)
int color;

char string[30]; /* Holds String Build to pass to file builder
as a keyin */

char temp[10]; /* Used in converting color int to color
string */

short irc; /* Holds status code returned from FB call */
short one=l; /* Gives a pointer to a value of one */

/* Create string to send to File Builder */
strcpy (string, "CO=");
itoa (color, temp);
strcat (string, temp);

/* Send String to File Builder */
irc = FBKeyboard (string);

/* check status and exit upon error */
if (irc != 0) (
printf ("\nERROR in CO %d", irc);
dedfpi (&one);
exit();

/* DESCRIPTION:
This routine places text in a 3D design f.le.

PARAMETERS:
x (in) - location to
y (in) - place text
z (in) - in design file.
string (in) - String to place in design file.
lvl (in) - level to place string on.
hgt (in) - height of text to place.
wdt (in) - width of text to place.
GO (in) - Global Origin in the design file.
SU (in) - Sub-Units / Master unit in design file.
PU (in) - Positional units/sub-unit in design file.
color (in) - color of text to place in design file.

SAMPLE CALL:
ptext3d (xval,yval,zval,"help",3,0.125,0.125,GO,SU,PU,5); */

void ptext3d (x, y, z, string, lvl, hgt, wdt, GO, SU, PU, color)
char *string;
double x, y, z, GO(3];
float hgt, wdt;
int lvl, SU, PU, color;

snort argl(2] = (0,0); /* No Graphic Group Specified */
double arg2(9] = (1,1,1,1,1,1,1,1,1); /*Transformation Matrix*/
short arg3; /* Level to Place Characters */

/* Structure to hold the fourth argument to the routine to call
to place 3D text in a design file. It holds text height, width,

48

the font number number of characters in the string and its
justification. */

struct arg4type
long height, width;
short font, numchrs, just;
arg4;

short arg5[7]; /* array to hold class, status, style,
line weight, color, text placement mode,
accuracy */

long arg6[3]; /* Origin of Text */
short arg77 /* Return Code */
short arg9[2] = (0,0); /* No Attribute linkage */
short one = 1; /* Gives Pointer to value of One */

/* Initialize Arguments */
arg3 = lvl;
arg4.height = hgt * SU * PU;
arg4.width = wdt * SU * PU;
arg4.font = 0;
arg4.num chrs = strlen(string);
arg4.just = 7;
arg5(0] = 0;
arg5[l] = 0;
arg5[2] = 0;
arg5[3] = 0;
arg5[4] = color;
arg5[5] = 0;
arg5[6] = 2;
arg6[0] = (x - GO[0])*SU*PU;
arg6[l] = (y - GO[l])*SU*PU;
arg6[2) = (z - GO(2))*SU*PU;

/* Call routine to place text in design file */
txmtrx (&argl, &arg2, &arg3, &arg4, &arg5, &arg6, &arg7, string,

&arg9);
/* Check Status and Exit Upon Error */

if (arg7 != 0) (
printf ("\nError in TXMTRX = %d", arg7);
dedfpi (&one);
exit (;

)
/* DESCRIPTION:
This routine retrieves the type 9 design file header from the
design file (in RAD50 format) passed to it.

PARAMETERS:
lktfile (in) - RAD50 file spec. of dgn file to get header
elbuf (out) - Buffer to place retrieved header into.

SAMPLE CALL: readheader (lktranfile, elembuf); */

void readheader (lktfile, elbuf)

49

short lktfile[7];
short elbuf[768];

short buflen = 768;/*Length of the buffer in bytes */
short irc; /*Status code retrieved from file builder */
short one = 1; /*Gives a pointer to a value of one */

/*Set search criteria to look for type 9 design file header */
SetSearch (lktfile, 8, 9);

/* Request element from design file */
reqele (elbuf, &buflen, &irc);

/* check status and exit upon error */
if (irc != 0) (
printf ("\nERROR IN REQELE = %d", irc);
dedfpi (&one);
exit();

/* DESCRIPTION:
This routine places a circle in the design file.

PARAMETERS:
radius (in) - radius of the circle to place in master units.
x (in) - Location to
y (in) - place circle at
z (in) - in design file.
level (in) - level to place circle on.
color (in) - color to make circle.

SAMPLE CALL: circle (0.5, xval, yval, zval, 3, 3); */

void circle (radius, x, y, z, level, color)
float radius;
double x, y, z;
int level, color;

char string(30]; /* String to hold keyin to give for radius*/
/* Set Active Level in Design File */

LV (level);
/* Set Active Color in Design File */

CO (color);
/* Give command to place circle in design file */

FBCommand ("PCIRR");
/* Convert circle radius to ASCII format */

ftoa (radius, string, 2);
/* Give rircJe radius (ASCII) to File Builder */

FBKeyboarl (string);
/* Give Location to Place circle at */

XY (x, y, z);

50

SUPPORT.C
/* DESCRIPTION: This routine will reverse a string in place.
PARAMETERS: s (in/out) - string to reverse.
SAMPLE CALL: reverse(strng); */

void reverse (s)
char *s;

int c; /* character storage variable */
int i, j; /* string subscribters */
for (i=0,j=strlen(s)-l; i<j; i++, j--)

c = s[i];
sci] =sj];
s(j] = c;

)
I
/* DESCRIPTION:
This routine converts a double number in to a string of ASCII
characters. A precision is also specified to determine how many
decimal places of accuracy to convert.

PARAMETERS:
num (in) - double number to convert to a string.
strng (out) - string to store converted number in.
prec (in) - number of decimal places to convert.

SAMPLE CALL: dtoa (real, string, accuracy);
NOTES:

The integer part of the number is converted then the decimal
part is multiplied by 10 to the power equal to the precision.
The number is rounded to the nearest integer and converted. */

void dtoa (num, strng, prec)
double num;
char *strng;
int prec;

{
double sign; /* stores the sign of the number */
int i; /* steps through the strings to convert */
int n; /* holds the integer portion of the numver */
char dec[80];/* string to hold the decimal string part */

/* store the sign of the number */
if ((sign = num) < 0)
num = -num;

/* retrieve integer portion of number */
n = (int) num;

/* convert integer portion of number to a string */
i = 0;
do

strng[i++] = n % 10 + '0';
) while ((n /- 10) > 0);
if (sign < 0)
strng(i++] =-1;

51

strng[i] = '\0';
reverse (strng);
strng~i+] =
strng[i] =

/* set up number to convert decimal portion of number */
for (i = 0; i < prec; i++)
num *= 10;

n = (int) num;
if ((num-(int) num) > 0.5)

n++ ;
/* convert decimal portion retrieved to a string */

for (i=0; i<prec; i-+) (
dec~i] = n % 10 + '0';
n /= 10;

)
decfprec] = '\0';
reverse(dec);

/* combine integer and decimal strings together */
strcat (strng, dec);

/* DESCRIPTION:
This routine converts a float number in to a string of ascii
characters. A precision is also specified to determine how many
decimal places of accuracy to convert.

PARAMETERS:
num (in) - float number to convert to a string.
strng (out) - string to store converted number in.
prec (in) - number of decimal places to convert.

SAMPLE CALL: ftoa (real, string, accuracy);
NOTES:

The integer part of the number is converted then the decimal
part is multiplied by 10 to the power equal to the precision.
The number is rounded to the nearest integer and converted. */

void ftoa (num, strng, prec)
float num;
char *strng;
int prec;

float sign; /* stores the sign of the number */
int i; /* steps through the strings to convert */
int n; /* holds the integer portion of the numver */
char dec[80];/* string to hold the decimal string part */

/* store the sign of the number */
if ((sign = num) < 0)

num = -num;
/* retrieve integer portion of number */

n = (int) num;
/* convert integer portion of number to a string */

i = 0;
do

52

strng[i++] = n % 10 + '0';
) while ((n /=10) > 0);
if (sign < 0)

strng(i++] = '-1;
strng(i] = '\0';
reverse(strng);
strng[i++) = 1.1;
strng[i] = '\0';

/* set up number to convert decimal portion of number */
for (i = 0; i < prec; i++)
num *= 10;

n = (int) num;
if ((num-(int) num) > 0.5)

n++ ;
/* convert decimal portion retrieved to a string */

for (i=0; i<prec; i++) (
dec(i] = n % 10 + '0';
n /= 10;

)
dec(prec] '\0';
reverse(dec);

/* combine integer and decimal strings together */
strcat (strng, dec);

)
/* DESCRIPTION:
This routine converts an integer to a string of ascii characters.
PARAMETERS:

num (in) - integer to convert to a string.
strng (out) - string to store converted number in.

SAMPLE CALL: itoa (integer, string); */

void itoa(int num, char *strng)

int i, sign;
if ((sign = num) < 0) /* record sign */

num = -num; /* make num positive */
i = 0;
do (/* generate digits in reverse order */

strngi++] = num % 10 + '0'; /* get next digit */
while ((num /= 10) > 0); /* delete it */

if (sign < 0)
strng[i++] = '-,;

strng(i] = '\0';
reverse(strng);

)
/* DESCRIPTION:
This routine allocates enough memory to hold a pointnode
structure and returns a pointer to the allocated space.

VALUE RETURNED: A pointer to the allocated space.
PARAMETERS: none
SAMPLE CALL: ptree = PointAlloc); */

53

struct pointnode *PointAlloc()

return (struct pointnode *) malloc(sizeof(struct pointnode));
I

/* DESCRIPTION:
This routine allocates enough memory to hold a linenode structure
and returns a pointer to the allocated space.

VALUE RETURNED: A pointer to the allocated space.
PARAMETERS: none
SAMPLE CALL: itree = LineAlloc(; */

struct linenode *LineAlloc()

return (struct linenode *) malloc(sizeof(struct linenode));
)
/* DESCRIPTION:
This routine allocates enough memory to hold a shapenode
structure and returns a pointer to the allocated space.

VALUE RETURNED: A pointer to the allocated space.
PARAMETERS: none
SAMPLE CALL: newshape = ShapeAlloc(); */

struct shapenode *ShapeAlloc()
I
return (struct shapenode *) malloc(sizeof(struct shapenode));

I
/* DESCRIPTION:
This routine allocates enough memory to hold an ordernode
structure and returns a pointer to the allocated space.

VALUE RETURNED: A pointer to the allocated space.
PARAMETERS: none
SAMPLE CALL: ordertree = OnodeAlloc); */

struct ordernode *OnodeAlloc()
{
return (struct ordernode *) malloc(sizeof(struct ordernode));

/* DESCRIPTION:
This routine returns the smaller point of the two passed it.

VALUE RETURNED:
The smaller point (struct point) of the two passed to it.

PARAMETERS:
pl (in) - first point to use in the comparison
p2 (in) - second point to use in the comparison

SAMPLE CALL: p3 - SmallPoint (npl, np2);
NOTES:

First Compares pl.x to p2.x

54

Second Compares pl.y to p2.y
Third Compares pl.z to p2.z

If points are equal, first point is returned arbitrarily. */

struct point SmallPoint (pl, p2)
struct point pl, p2;

char plstring[20];
char p2string(20];

/* First Compare X values */
/* convert x values to strings */

dtoa (pl.x, pistring, 4);
dtoa (p2.x, p2string, 4);
if (strcmp (plstring, p2string) < 0)
return pl;

else if (strcmp (plstring, p2string) > 0)
return p2;

else (
/* Equal X Values, Compare Y Values */

/* convert y values to strings */
dtoa (pl.y, pistring, 4);
dtoa (p2.y, p2string, 4);
if (strcmp(plstring, p2string) < 0)
return pl;

else if (strcmp(plstring, p2string) < 0)
return p2;

else {
/* Equal X and Y Values, Compare Z Values */

/* convert z values to strings */
dtoa (pl.z, pistring, 4);
dtoa (p2.z, p2string, 4);
if (strcmp(plstring, p2string) < 0)
return p1;

else if (strcmp(plstring, p2string) < 0)
return p2;

else
/* Equal Points (Arbitrarity Return First Point) */

return pl;
I

)

/* DESCRIPTION:
Routine determines if the two points passed it are equal.

VALUE RETURNED:
False is returned if the points are not equal.
True is returned if the points are equal.

PARAMETERS:
pl (in) - First of Two Points to compare.
p2 (in) - Second of Two Points to compate.

SAMPLE CALL:
if (equal (pl, p2)) (

printf ("\nEqual Points");

55

int equal (pl, p2)
struct point pl, p2;

if ((pl.x == p2.x) && (pl.y == p2.y) && (pl.z == p2.z))
return TRUE;

else
return FALSE;

)
/* DESCRIPTION:

This routine returns the larger point of the two passed it.
VALUE RETURNED:

The larger point (struct point) of the two passed to it.
PARAMETERS:

pl (in) - first point to use in the comparison
p2 (in) - second point to use in the comparison

SAMPLE CALL: p3 = LargePoint (npl, np2);
NOTES:

First Compares pl.x to p2.x
Second Compares pl.y to p2.y
Third Compares pl.z to p2.z

If points are equal, second point is returned arbitrarily. */

struct point LargePoint (pl, p2)
struct point pl, p2;
cchar plstring[20];
char p2string[20];

/* Compare X Values First */
/* convert x values to strirgs */

dtoa (pl.x, pistring, 4);
dtoa (p2.x, p2string, 4);
if (strcmp(plstring,p2string) < 0)

return p2;
else if (strcmp(plstring, p2string) > 0)

return pl;
else (

/* Equal X Values, Compare Y Values */
/* convert y values to strings */
dtoa (pl.y, plstring, 4);
dtoa (p2.y, p2string, 4);
if (strcmp(plstring, p2string) < 0)

return p2;
else if (strcmp(plstring, p2string) < 0)

return pl;
else (

/* Equal X and Y Values, Compare Z Values */
/* convert z values to strings */
dtoa (pl.z, plstring, 4);
dtoa (p2.z, p2string, 4);
if (strcmp(plstring, p2string) < 0)

56

return p2;
else if (strcmp(plstring, p2string) < 0)

return pl;
else
/* Equal Points (Arbitrarily Return Second Point) */

return p2;
I

)

/* DESCRIPTION:
This routine compares two points (x,y,z values) and returns a
value based on the results of the comparison.
VALUE RETURNED:

-1 if pl is less than p2
0 if pl is equal to p2
1 if pl is greater than p2

PARAMETERS:
pl (in) - first point to use in the comparison
p2 (in) - second point to use in the comparison

SAMPLE CALL: result = CompPoint(pl, ptree->pnt); */

int CompPoint (p1, p2)
struct point pi, p2;
char p(string[20];
char p2string[20];

/* convert x values to strings */
dtoa (pl.x, pistring, 4);
dtoa (p2.x, p2string, 4);
if (strcmp(plstring, p2string) < 0)

/* point 2 is greater */
return -1;

)
else

if (strcmp(plstring,p2string) > 0)
/* point 1 is greater */

return 1;
)
else {

/* convert y values to strings */
dtoa (pl.y, pistring, 4);
dtoa (p2.y, p2string, 4);
if (strcmp(plstring, p2string) < 0)

/* point 2 is greater */
return -1;

)
else

if (strcmp (pistring, p2string) > 0)
/* point 1 is greater */

return 1;
I
else (

57

/* convert z values to strings */
dtoa (pl.z, pistring, 4);
dtoa (p2.z, p2string, 4);
if (strcmp(plstring, p2string) < 0)

/* point 2 is greater */
return -1;

else
if (strcmp (pistring, p2string) > 0)

/* point 1 is greater */
return 1;

)
else {

/* points are equal */
return 0;

)
)

)

/* DESCRIPTION:
This routine searches a tree of pointers for a specific point,
and returns a pointer to the node in the tree where the point was
found or NULL if the point was not found.

VALUE RETURNED: Pointer to node containing the point. NULL if
the point not found.

PARAMETERS:
pi (in) - point to search for in the tree.
ptree (in) - tree or subtree to search the point for.

SAMPLE CALL: pnode = SearchForPoint (newpoint, pointtree) */

struct pointnode *SearchForPoint (pl, ptree)
struct point pl;
struct pointnode uptree;

int result;
if (ptree != NULL) (

if ((result = CompPoint (pl, ptree->pnt)) == 0)
/* Point Found */

return ptree;
else if (result > 0)

/* Search Left Tree */
return SearchForPoint (pl, ptree->left);

else
/* Search Right Tree */

return SearchForPoint (pl, ptree->right);

else
/* Point Not Found */

return NULL;
)

58

/* DESCRIPTION:
This routine inserts a point into a tree of pointers. The point
added to the tree is also assigned a number. The number is then
incremented for the next time it is needed.

VALUE RETURNED: A pointer to the subtree or new leaf added.
PARAMETERS:

pl (in) - point to add to the tree.
ptree (in) - pointer to the tree or subtree to add the point
nnde (in/ut) - number to assign to the point.

SAMPLE CALL:
ptree = InsertPoint(newpoint, pointtree, &next node);

NOTES: Duplicate points are ignored. (not inserted */

struct pointnode *InsertPoint (p1, ptree, nnode)
struct point pl;
struct pointnode *ptree;
int *nnode;

int result;
if (ptree == NULL) {

/* Insertion point found create new node */
ptree = PointAlloc);
ptree->pnt = pl;
ptree->numbered = FALSE;
ptree->pointnum = *nnode;
*nnode += 1;
ptree->left = ptree->right = NULL;

else if ((result = CompPoint (pl, ptree->pnt)) > 0)
/* point is greater than point at current position */

ptree->left = InsertPoint(pl, ptree->left, nnode);
else if (result < 0)

/* point is less than point at current position */
ptree->right = InsertPoint(pl, ptree->right, nnode);

return ptree;

/* DESCRIPTION:
This routine searches a tree of lines for a specific line, and
returns a pointer to the node in the tree where the line was
found or NULL if the point was not found.

VALUE RETURNED: Pointer to the node containing the line or NULL
if the point was not found.

PARAMETERS:
pl (in) - one point of the line to search for in the tree.
p2 (in) - the other point of the line to search the tree
ltree (in) - pointer to the tree or subtree to search the

line for.
SAMPLE CALL: SearchForLine(npl, np2, linetree);
NOTES: The order points of line are specified doesn't matter.*/

59

struct linenode *SearchForLine (pl, p2, itree)
struct point pl, p2;
struct linenode *ltree;

int resultsf2];
if (itree != NULL) (
results(O] = CompPoint (SmallPoint (pl, p2), itree->pl->pnt);
results(l] = CompPoint (LargePoint (pl, p2), ltree->p2->pnt);
if (results[O] == 0) (

7* First Point Was Matched */
if (results(l] == 0)

/* Second Point Was Matched -- Line Found */
return itree;

else if (resultsl] > 0)
/* Search Left Tree */

return SearchForLine (pl, p2, ltree->left);
else

/* Search Right Tree */
return SearchForLine (pl, p2, ltree->right);

else if (results[01 > 0)
7* Search Left Tree */

return SearchForLine (pl, p2, ltree->left);
else

/* Search Right Tree */
return SearchForLine (pl, p2, ltree->right);

else
/* Line Not Found In Tree */

return NULL;

/* DESCRIPTION:
This routine inserts a line into a tree of lines. The line added
to the tree is also assigned a midpoint node number. The number
is then incremented for the next time it is needed.

VALUE RETURNED: A pointer to the subtree or new leaf added.
PARAMETERS:

pl (in) - one of the points of the line to add to the tree.
p2 (in) - the second point of the line to add to the tree.
itree (in) - pointer to the tree or subtree to add the line.
nmid (in/out) - next midpoint number to use labeling lines.
npnt (in/out) - next point number to use in labeling points.
ptree (in/out) - pointer to the top of the tree of points

which the line points must be added to.
SAMPLE CALL:

linetree = InsertLine(npl, np2, linetree, &nmidpnt, &npoint,
&pointtree);

NOTES: The order the points are specified in does not matter.*/

struct linenode *InsertLine (pl, p2, ltree, nmid, npnt, ptree)
struct point pl, p2;

60

struct linenode *ltree;
int *nmid, *npnt;
struct pointnode **ptree;

int results[2];
if (itree == NULL) {

/* Insertion Point Found Create New Node */
Itree = LineAlloc);
ltree->midpointnum = *nmid;
ltree->numbered = FALSE;
*nmid += 1;
ltree->right = ltree->ieft = NULL;
*ptree = InsertPoint (pl, *ptree, npnt);
*ptree = InsertPoint (p2, *ptree, npnt);
ltree->pl = SearchForPoint (SmallPoint(pl, p2), *ptree);
ltree->p2 = SearchForPoint (LargePoint(pl, p2), *ptree);

else {
results[O] = CompPoint (SmallPoint (pl, p2), ltree->pl->pnt);
results[l] = CompPoint (LargePoint (pl, p2), ltree->p2->pnt);
if (results[0] > 0)

/* smallest point of line is greater than small point of line at
current position */

ltree->left = InsertLine (pl, p2, ltree->left, nmid, npnt,
ptree);

else if (results[O] < 0)
/* smallest point of line is less than small point of line

at current position */
ltree->right = InsertLine (pl, p2, ltree->right, nmid,

npnt, ptree);
else (

if (results(l] > 0)
/* large point of line is greater than large point of line

at current position */
ltree->left = InsertLine (pl, p2, ltree->left, nmid,

npnt, ptree);
else if (results[l] < 0)

/* large point of line is less than large point of line at
current position */

ltree->right = InsertLine (pl, p2, ltree->right, nmid,
npnt, ptree);

)
)
return ltree;

1
/* DESCRIPTION:
This routine inserts a shape into a list of shapes. The shape
inserted is also assigned a value. This value is also
incremented so that it is correct the next time it is needed.

PARAMETERS:
pnts (in) - array of three points defining the triangle.

61

sdata (in/out) - structure to hold the data for the
shapelist, linetree, pointtree, nextnode
number, and next shape number.

SAMPLE CALL: InsertShape (points, &shapedata); *

void InsertShape (pnts, sdata)
struct point pnts[3];
struct shapestruct *sdata;

struct shapenode *newshape;
/* Create New Shape Node *

newshape = ShapeAllocoa;
newshape->shapenum = (sdata->nextshape) ++;
newshape->next = sdata->shapel ist;

/* Insert Lines into LineTree */
sdata->linetree = InsertLine (pnts(OJ, pnts(l), sdata->linetree,

& (sdata->nextmidpnt), & (sdata->nextpoint), & (sdata->pointtree));
sdata->linetree = InsertLine (pnts[1), pnts[2), sdata->linetree,

& (sdata->nextmidpnt), & (sdata->nextpoint), & (sdata->pointtree));
sdata->linetree = InsertLine (pnts[2], pnts[O], sdata->linetree,

& (sdata->nextmidpnt), & (sdata->nextpoint), & (sdata->pointtree));
/* Locate Positions of Newly Entered Lines */

newshape->ll = SearchForLine (pnts[O], pnts(l), sdata->linetree);
newshape->12 = SearchForLine (pnts(1), pnts(2], sdata->linetree);
newshape->13 = SearchForLine (pnts[2], pnts(O], sdata->linetree);

/* Locate Position of Points */
newshape->pl = SearchForPoint (pnts[o), sdata->pointtree);
newshape->p2 = SearchForPoint (pnts(l], sdata->pointtree);
newshape->p3 = SearchForPoint (pnts(2], sdata->pointtree);

/* Link New Shape Into List *
sdata->shapelist = newshape;

7* DESCRIPTION:
This routine inserts a node which is used for ordering the points
in the point tree by the number they were assigned as compared to
the point tree which is sorted by x, y & z values of the points.

VALUE RETURNED: Pointer to the subtree or new leaf added.
PARAMETERS:

ot (in) - Pointer to the order tree or subtree to add node
pntt (in) - Pointer to the point tree node to add to the

order tree.
SAMPLE CALL: otree = InsertOnode (otree, ptreenode); *

struct ordernode *InsertOnode (ot, pratt)
struct -rdernode *ot;
struct Aintnode *pntt;

if Cot -= NULL)(
/* Leaf Was Reached, Insert New Node *

ot = OnodeA11oco;
ot->pntr = pratt;

62

ot->left=ot->right=NULL;
)
else if (ot->pntr->pointnum < pntt->pointnum)

/* Check Right Tree For Node */
ot->right = InsertOnode (ot->right, pntt);

else
/* Check Left Tree For Node */

ot->left = InsertOnode (ot->left, pntt);
return ot;

)
/* DESCRIPTION:
This routine calculates the slope the line created between the
two points passed starting at the first point and going to the
second point.

VALUE RETURNED: Double precesion floating pnt value representirg
the slope of the line created by the two pnts passed the routine.

PARAMETERS:
pi (in) - structure to hold first point of line to calculate

slope of.
p2 (in) - structure to hold second point of line to

calculate slope of.
SAMPLE CALL:

slopel = slope(nextshape->p2->pnt, nextshape->pl->pnt);
NOTES:

A check must be made to insure the x values of the two
points to calculate to the slope of are not the same. If they
are the same a value of 9000 is returned as the slope of the line
created would approach infinity. */

double slope (pl, p2)
struct point pl,p2;

t
if (pl.x != p2.x)
return ((p2.y - pl.y)/(p2.x - pl.x));

else
return 9000.00;

/* DESCRIPTION:
This routine returns a pointer to the point structure which

has the smallest x value.

VALUE RETURNED:
Pointer to the pointnode structure with the smallest x value.

PARAMETERS: pl (in) - Pointers to the
p2 (in) - three points to
p3 (in) - compare x values of.

SAMPLE CALL:
lp = least (nextshape->pl, nextshape->p2, nextshape->p3);

NOTES:

63

If Equivalent x values are the smallest, it is not known
which pointnode pointer will be returned. */

struct pointnode *least (pl, p2, p3)
struct pointnode *pl, *p2, *p3;

(
if (equal (pl->pnt, SmallPoint (pl->pnt, p2->pnt)))if (equal (pl->pnt, SmallPoint (pl->pnt, p3->pnt)))

return pl;
else

return p3;
else

if (equal (p2->pnt, SmallPoint (p2->pnt, p3->pnt)))
return p2;

else
return p3;

)

GEOMETRY.H

/* Point - Structure to hold the x, y, and z values
associated with a cartesian plane coordinate.

Line - Structure to hold two Points to define a line. */

struct point (
double x, y, z;

);
struct line {

struct point pointl, point2;
);

64

GEOMETRY.C

/* DESCRIPTION:
This routine calculates the distance between two points.

VALUE RETURNED: This distance between the two points is returned.
PARAMETERS:

pointl (in) - structure to hold the first point.
point2 (in) - structure to hold the second point.

SAMPLE CALL: distance = dist (pointl, point2); */

double dist (pointl, point2)
struct point pointl, point2;
t
return sqrt (((pointl.x - point2.x) * (pointl.x - point2.x)));((pointl.y - point2.y) * (pointl.y - point2.y)));

/* DESCRIPTION:
This routine calculates the slope the line created between

the two points passed starting at the first point and going to
the second point.

VALUE RETURNED:
Double precesion floating point value representing the slope

of the line created by the two points passed to the routine.

PARAMETERS:
pointl (in) - holds first point of line to calculate slope
point2 (in) - holds second point of line to calculate slope

SAMPLE CALL:
slopel = slope(nextshape->p2->pnt, nextshape->pl->pnt);

NOTES:
A check must be made to insure the x values of the two

points to calculate to the slope of are not the same. If they
are the same a value of 9000 is returned as the slope of the line
created would approach infinity. */

double slope (pointl, point2)
struct point pointl, point2;

if (pointl.x != point2.x)
return ((point2.y - pointl.y)/(point2.x - pointl.x));

else
return 9000.00;

/* DESCRIPTION:
This routine calculates the y-intercept of a line provided

it has the slope and one point of the line.

VALUE RETURNED: Y-Intercept of the line is returned.
PARAMETERS:

slope (in) - slope of the line to find y-intercept of.
xval (in) - value of one points x value.

65

yval (in) - value of one points y value.
SAMPLE CALL: YIntercept (slope (xl, yl, x2, y2), xl, yl); */
double YIntercept (slope, pnt)

double slope;
struct point pnt;

return pnt.y - (slope * pnt.x);
)
/* DESCRIPTION:
This routine calculates the intersection of 2 lines and returns
fills the x and y return values. If the lines are para-Ilel then
NULL is returned by the procedure otherwise TRUE is returned.

VALUE RETURNED:
TRUE or NULL depending if the lines are parallel or not.

PARAMETERS:
linel (in) - structure holding 2 points of first line.
line2 (in) - structure holding 2 points of second line.
intpoint (out) - structure holding point of intersection.

SAMPLE CALL:
FindInt (secline, bankline, &intersectpoint); */

int FindInt (linel, line2, intpoint)
struct line linel, line2;
struct point *intpoint;

double slopel, slope2, yintl, yint2, slope(, YIntercept(;
slopel = slope (linel.pointl, linel.point2);
slope2 = slope (line2.pointl, line2.point2);
if (slopel != slope2) (
yintl = YIntercept (slopel, linel.pointl);
yint2 = YIntercept (slope2, line2.pointl);
intpoint->x = ((yint2-yintl)/(slopel-slope2));
intpoint->y = intpoint->x * slopel + yintl;
return TRUE;

)
else

return NULL;
6

66

